Description: Property of being a preordered set (deduction form). (Contributed by Zhi Wang, 18-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isprsd.b | |
|
isprsd.l | |
||
isprsd.k | |
||
Assertion | isprsd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprsd.b | |
|
2 | isprsd.l | |
|
3 | isprsd.k | |
|
4 | 3 | elexd | |
5 | eqid | |
|
6 | eqid | |
|
7 | 5 6 | isprs | |
8 | 7 | baib | |
9 | 4 8 | syl | |
10 | 2 | breqd | |
11 | 2 | breqd | |
12 | 2 | breqd | |
13 | 11 12 | anbi12d | |
14 | 2 | breqd | |
15 | 13 14 | imbi12d | |
16 | 10 15 | anbi12d | |
17 | 1 16 | raleqbidv | |
18 | 1 17 | raleqbidv | |
19 | 1 18 | raleqbidv | |
20 | 9 19 | bitr4d | |