Metamath Proof Explorer


Theorem isprsd

Description: Property of being a preordered set (deduction form). (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypotheses isprsd.b φB=BaseK
isprsd.l φ˙=K
isprsd.k φKV
Assertion isprsd φKProsetxByBzBx˙xx˙yy˙zx˙z

Proof

Step Hyp Ref Expression
1 isprsd.b φB=BaseK
2 isprsd.l φ˙=K
3 isprsd.k φKV
4 3 elexd φKV
5 eqid BaseK=BaseK
6 eqid K=K
7 5 6 isprs KProsetKVxBaseKyBaseKzBaseKxKxxKyyKzxKz
8 7 baib KVKProsetxBaseKyBaseKzBaseKxKxxKyyKzxKz
9 4 8 syl φKProsetxBaseKyBaseKzBaseKxKxxKyyKzxKz
10 2 breqd φx˙xxKx
11 2 breqd φx˙yxKy
12 2 breqd φy˙zyKz
13 11 12 anbi12d φx˙yy˙zxKyyKz
14 2 breqd φx˙zxKz
15 13 14 imbi12d φx˙yy˙zx˙zxKyyKzxKz
16 10 15 anbi12d φx˙xx˙yy˙zx˙zxKxxKyyKzxKz
17 1 16 raleqbidv φzBx˙xx˙yy˙zx˙zzBaseKxKxxKyyKzxKz
18 1 17 raleqbidv φyBzBx˙xx˙yy˙zx˙zyBaseKzBaseKxKxxKyyKzxKz
19 1 18 raleqbidv φxByBzBx˙xx˙yy˙zx˙zxBaseKyBaseKzBaseKxKxxKyyKzxKz
20 9 19 bitr4d φKProsetxByBzBx˙xx˙yy˙zx˙z