Metamath Proof Explorer


Theorem ispthson

Description: Properties of a pair of functions to be a path between two given vertices. (Contributed by Alexander van der Vekens, 8-Nov-2017) (Revised by AV, 16-Jan-2021) (Revised by AV, 21-Mar-2021)

Ref Expression
Hypothesis pthsonfval.v V=VtxG
Assertion ispthson AVBVFUPZFAPathsOnGBPFATrailsOnGBPFPathsGP

Proof

Step Hyp Ref Expression
1 pthsonfval.v V=VtxG
2 1 pthsonfval AVBVAPathsOnGB=fp|fATrailsOnGBpfPathsGp
3 2 breqd AVBVFAPathsOnGBPFfp|fATrailsOnGBpfPathsGpP
4 breq12 f=Fp=PfATrailsOnGBpFATrailsOnGBP
5 breq12 f=Fp=PfPathsGpFPathsGP
6 4 5 anbi12d f=Fp=PfATrailsOnGBpfPathsGpFATrailsOnGBPFPathsGP
7 eqid fp|fATrailsOnGBpfPathsGp=fp|fATrailsOnGBpfPathsGp
8 6 7 brabga FUPZFfp|fATrailsOnGBpfPathsGpPFATrailsOnGBPFPathsGP
9 3 8 sylan9bb AVBVFUPZFAPathsOnGBPFATrailsOnGBPFPathsGP