Metamath Proof Explorer


Theorem issetft

Description: Closed theorem form of isset that does not require x and A to be distinct. Extracted from the proof of vtoclgft . (Contributed by Wolf Lammen, 9-Apr-2025)

Ref Expression
Assertion issetft _xAAVxx=A

Proof

Step Hyp Ref Expression
1 isset AVyy=A
2 nfv y_xA
3 nfnfc1 x_xA
4 nfcvd _xA_xy
5 id _xA_xA
6 4 5 nfeqd _xAxy=A
7 6 nfnd _xAx¬y=A
8 nfvd _xAy¬x=A
9 eqeq1 y=xy=Ax=A
10 9 notbid y=x¬y=A¬x=A
11 10 a1i _xAy=x¬y=A¬x=A
12 2 3 7 8 11 cbv2w _xAy¬y=Ax¬x=A
13 alnex y¬y=A¬yy=A
14 alnex x¬x=A¬xx=A
15 12 13 14 3bitr3g _xA¬yy=A¬xx=A
16 15 con4bid _xAyy=Axx=A
17 1 16 bitrid _xAAVxx=A