Metamath Proof Explorer


Theorem istsr

Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Hypothesis istsr.1 X=domR
Assertion istsr RTosetRelRPosetRelX×XRR-1

Proof

Step Hyp Ref Expression
1 istsr.1 X=domR
2 dmeq r=Rdomr=domR
3 2 1 eqtr4di r=Rdomr=X
4 3 sqxpeqd r=Rdomr×domr=X×X
5 id r=Rr=R
6 cnveq r=Rr-1=R-1
7 5 6 uneq12d r=Rrr-1=RR-1
8 4 7 sseq12d r=Rdomr×domrrr-1X×XRR-1
9 df-tsr TosetRel=rPosetRel|domr×domrrr-1
10 8 9 elrab2 RTosetRelRPosetRelX×XRR-1