Metamath Proof Explorer


Theorem istvc

Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypothesis tlmtrg.f F=ScalarW
Assertion istvc WTopVecWTopModFTopDRing

Proof

Step Hyp Ref Expression
1 tlmtrg.f F=ScalarW
2 fveq2 x=WScalarx=ScalarW
3 2 1 eqtr4di x=WScalarx=F
4 3 eleq1d x=WScalarxTopDRingFTopDRing
5 df-tvc TopVec=xTopMod|ScalarxTopDRing
6 4 5 elrab2 WTopVecWTopModFTopDRing