Metamath Proof Explorer


Theorem isunit2

Description: Alternate definition of being a unit. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses isunit2.b B = Base R
isunit2.u U = Unit R
isunit2.m · ˙ = R
isunit2.1 1 ˙ = 1 R
Assertion isunit2 X U X B u B X · ˙ u = 1 ˙ v B v · ˙ X = 1 ˙

Proof

Step Hyp Ref Expression
1 isunit2.b B = Base R
2 isunit2.u U = Unit R
3 isunit2.m · ˙ = R
4 isunit2.1 1 ˙ = 1 R
5 eqid r R = r R
6 1 5 3 dvdsr X r R 1 ˙ X B v B v · ˙ X = 1 ˙
7 eqid opp r R = opp r R
8 7 1 opprbas B = Base opp r R
9 eqid r opp r R = r opp r R
10 eqid opp r R = opp r R
11 8 9 10 dvdsr X r opp r R 1 ˙ X B u B u opp r R X = 1 ˙
12 1 3 7 10 opprmul u opp r R X = X · ˙ u
13 12 eqeq1i u opp r R X = 1 ˙ X · ˙ u = 1 ˙
14 13 rexbii u B u opp r R X = 1 ˙ u B X · ˙ u = 1 ˙
15 14 anbi2i X B u B u opp r R X = 1 ˙ X B u B X · ˙ u = 1 ˙
16 11 15 bitri X r opp r R 1 ˙ X B u B X · ˙ u = 1 ˙
17 6 16 anbi12ci X r R 1 ˙ X r opp r R 1 ˙ X B u B X · ˙ u = 1 ˙ X B v B v · ˙ X = 1 ˙
18 2 4 5 7 9 isunit X U X r R 1 ˙ X r opp r R 1 ˙
19 anandi X B u B X · ˙ u = 1 ˙ v B v · ˙ X = 1 ˙ X B u B X · ˙ u = 1 ˙ X B v B v · ˙ X = 1 ˙
20 17 18 19 3bitr4i X U X B u B X · ˙ u = 1 ˙ v B v · ˙ X = 1 ˙