| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isunit2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
isunit2.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
isunit2.m |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
isunit2.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
| 6 |
1 5 3
|
dvdsr |
⊢ ( 𝑋 ( ∥r ‘ 𝑅 ) 1 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) |
| 7 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 8 |
7 1
|
opprbas |
⊢ 𝐵 = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 9 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) |
| 10 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
| 11 |
8 9 10
|
dvdsr |
⊢ ( 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑢 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = 1 ) ) |
| 12 |
1 3 7 10
|
opprmul |
⊢ ( 𝑢 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = ( 𝑋 · 𝑢 ) |
| 13 |
12
|
eqeq1i |
⊢ ( ( 𝑢 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = 1 ↔ ( 𝑋 · 𝑢 ) = 1 ) |
| 14 |
13
|
rexbii |
⊢ ( ∃ 𝑢 ∈ 𝐵 ( 𝑢 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = 1 ↔ ∃ 𝑢 ∈ 𝐵 ( 𝑋 · 𝑢 ) = 1 ) |
| 15 |
14
|
anbi2i |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑢 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = 1 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑋 · 𝑢 ) = 1 ) ) |
| 16 |
11 15
|
bitri |
⊢ ( 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑋 · 𝑢 ) = 1 ) ) |
| 17 |
6 16
|
anbi12ci |
⊢ ( ( 𝑋 ( ∥r ‘ 𝑅 ) 1 ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) ↔ ( ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑋 · 𝑢 ) = 1 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) ) |
| 18 |
2 4 5 7 9
|
isunit |
⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ( ∥r ‘ 𝑅 ) 1 ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) ) |
| 19 |
|
anandi |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( ∃ 𝑢 ∈ 𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) ↔ ( ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝑋 · 𝑢 ) = 1 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) ) |
| 20 |
17 18 19
|
3bitr4i |
⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝐵 ∧ ( ∃ 𝑢 ∈ 𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) ) |