Metamath Proof Explorer


Theorem isunit2

Description: Alternate definition of being a unit. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses isunit2.b 𝐵 = ( Base ‘ 𝑅 )
isunit2.u 𝑈 = ( Unit ‘ 𝑅 )
isunit2.m · = ( .r𝑅 )
isunit2.1 1 = ( 1r𝑅 )
Assertion isunit2 ( 𝑋𝑈 ↔ ( 𝑋𝐵 ∧ ( ∃ 𝑢𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) )

Proof

Step Hyp Ref Expression
1 isunit2.b 𝐵 = ( Base ‘ 𝑅 )
2 isunit2.u 𝑈 = ( Unit ‘ 𝑅 )
3 isunit2.m · = ( .r𝑅 )
4 isunit2.1 1 = ( 1r𝑅 )
5 eqid ( ∥r𝑅 ) = ( ∥r𝑅 )
6 1 5 3 dvdsr ( 𝑋 ( ∥r𝑅 ) 1 ↔ ( 𝑋𝐵 ∧ ∃ 𝑣𝐵 ( 𝑣 · 𝑋 ) = 1 ) )
7 eqid ( oppr𝑅 ) = ( oppr𝑅 )
8 7 1 opprbas 𝐵 = ( Base ‘ ( oppr𝑅 ) )
9 eqid ( ∥r ‘ ( oppr𝑅 ) ) = ( ∥r ‘ ( oppr𝑅 ) )
10 eqid ( .r ‘ ( oppr𝑅 ) ) = ( .r ‘ ( oppr𝑅 ) )
11 8 9 10 dvdsr ( 𝑋 ( ∥r ‘ ( oppr𝑅 ) ) 1 ↔ ( 𝑋𝐵 ∧ ∃ 𝑢𝐵 ( 𝑢 ( .r ‘ ( oppr𝑅 ) ) 𝑋 ) = 1 ) )
12 1 3 7 10 opprmul ( 𝑢 ( .r ‘ ( oppr𝑅 ) ) 𝑋 ) = ( 𝑋 · 𝑢 )
13 12 eqeq1i ( ( 𝑢 ( .r ‘ ( oppr𝑅 ) ) 𝑋 ) = 1 ↔ ( 𝑋 · 𝑢 ) = 1 )
14 13 rexbii ( ∃ 𝑢𝐵 ( 𝑢 ( .r ‘ ( oppr𝑅 ) ) 𝑋 ) = 1 ↔ ∃ 𝑢𝐵 ( 𝑋 · 𝑢 ) = 1 )
15 14 anbi2i ( ( 𝑋𝐵 ∧ ∃ 𝑢𝐵 ( 𝑢 ( .r ‘ ( oppr𝑅 ) ) 𝑋 ) = 1 ) ↔ ( 𝑋𝐵 ∧ ∃ 𝑢𝐵 ( 𝑋 · 𝑢 ) = 1 ) )
16 11 15 bitri ( 𝑋 ( ∥r ‘ ( oppr𝑅 ) ) 1 ↔ ( 𝑋𝐵 ∧ ∃ 𝑢𝐵 ( 𝑋 · 𝑢 ) = 1 ) )
17 6 16 anbi12ci ( ( 𝑋 ( ∥r𝑅 ) 1𝑋 ( ∥r ‘ ( oppr𝑅 ) ) 1 ) ↔ ( ( 𝑋𝐵 ∧ ∃ 𝑢𝐵 ( 𝑋 · 𝑢 ) = 1 ) ∧ ( 𝑋𝐵 ∧ ∃ 𝑣𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) )
18 2 4 5 7 9 isunit ( 𝑋𝑈 ↔ ( 𝑋 ( ∥r𝑅 ) 1𝑋 ( ∥r ‘ ( oppr𝑅 ) ) 1 ) )
19 anandi ( ( 𝑋𝐵 ∧ ( ∃ 𝑢𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) ↔ ( ( 𝑋𝐵 ∧ ∃ 𝑢𝐵 ( 𝑋 · 𝑢 ) = 1 ) ∧ ( 𝑋𝐵 ∧ ∃ 𝑣𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) )
20 17 18 19 3bitr4i ( 𝑋𝑈 ↔ ( 𝑋𝐵 ∧ ( ∃ 𝑢𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) )