| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isunit2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
isunit2.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
isunit2.m |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
isunit2.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 5 |
|
isunit3.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
isunit3.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 7 |
1 2 3 4
|
isunit2 |
⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝐵 ∧ ( ∃ 𝑢 ∈ 𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) ) |
| 8 |
5
|
biantrurd |
⊢ ( 𝜑 → ( ( ∃ 𝑢 ∈ 𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 · 𝑋 ) = 1 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( ∃ 𝑢 ∈ 𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) ) ) |
| 9 |
7 8
|
bitr4id |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ( ∃ 𝑢 ∈ 𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) ) |
| 10 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 11 |
10 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 12 |
10 4
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 13 |
10 3
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 14 |
10
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 15 |
6 14
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 16 |
11 12 13 15 5
|
mndlrinvb |
⊢ ( 𝜑 → ( ( ∃ 𝑢 ∈ 𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣 ∈ 𝐵 ( 𝑣 · 𝑋 ) = 1 ) ↔ ∃ 𝑦 ∈ 𝐵 ( ( 𝑋 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑋 ) = 1 ) ) ) |
| 17 |
9 16
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ∃ 𝑦 ∈ 𝐵 ( ( 𝑋 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑋 ) = 1 ) ) ) |