Metamath Proof Explorer


Theorem isunit3

Description: Alternate definition of being a unit. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses isunit2.b 𝐵 = ( Base ‘ 𝑅 )
isunit2.u 𝑈 = ( Unit ‘ 𝑅 )
isunit2.m · = ( .r𝑅 )
isunit2.1 1 = ( 1r𝑅 )
isunit3.x ( 𝜑𝑋𝐵 )
isunit3.r ( 𝜑𝑅 ∈ Ring )
Assertion isunit3 ( 𝜑 → ( 𝑋𝑈 ↔ ∃ 𝑦𝐵 ( ( 𝑋 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑋 ) = 1 ) ) )

Proof

Step Hyp Ref Expression
1 isunit2.b 𝐵 = ( Base ‘ 𝑅 )
2 isunit2.u 𝑈 = ( Unit ‘ 𝑅 )
3 isunit2.m · = ( .r𝑅 )
4 isunit2.1 1 = ( 1r𝑅 )
5 isunit3.x ( 𝜑𝑋𝐵 )
6 isunit3.r ( 𝜑𝑅 ∈ Ring )
7 1 2 3 4 isunit2 ( 𝑋𝑈 ↔ ( 𝑋𝐵 ∧ ( ∃ 𝑢𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) )
8 5 biantrurd ( 𝜑 → ( ( ∃ 𝑢𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣𝐵 ( 𝑣 · 𝑋 ) = 1 ) ↔ ( 𝑋𝐵 ∧ ( ∃ 𝑢𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) ) )
9 7 8 bitr4id ( 𝜑 → ( 𝑋𝑈 ↔ ( ∃ 𝑢𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣𝐵 ( 𝑣 · 𝑋 ) = 1 ) ) )
10 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
11 10 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
12 10 4 ringidval 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) )
13 10 3 mgpplusg · = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
14 10 ringmgp ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
15 6 14 syl ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
16 11 12 13 15 5 mndlrinvb ( 𝜑 → ( ( ∃ 𝑢𝐵 ( 𝑋 · 𝑢 ) = 1 ∧ ∃ 𝑣𝐵 ( 𝑣 · 𝑋 ) = 1 ) ↔ ∃ 𝑦𝐵 ( ( 𝑋 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑋 ) = 1 ) ) )
17 9 16 bitrd ( 𝜑 → ( 𝑋𝑈 ↔ ∃ 𝑦𝐵 ( ( 𝑋 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑋 ) = 1 ) ) )