| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isunit2.b |
|- B = ( Base ` R ) |
| 2 |
|
isunit2.u |
|- U = ( Unit ` R ) |
| 3 |
|
isunit2.m |
|- .x. = ( .r ` R ) |
| 4 |
|
isunit2.1 |
|- .1. = ( 1r ` R ) |
| 5 |
|
isunit3.x |
|- ( ph -> X e. B ) |
| 6 |
|
isunit3.r |
|- ( ph -> R e. Ring ) |
| 7 |
1 2 3 4
|
isunit2 |
|- ( X e. U <-> ( X e. B /\ ( E. u e. B ( X .x. u ) = .1. /\ E. v e. B ( v .x. X ) = .1. ) ) ) |
| 8 |
5
|
biantrurd |
|- ( ph -> ( ( E. u e. B ( X .x. u ) = .1. /\ E. v e. B ( v .x. X ) = .1. ) <-> ( X e. B /\ ( E. u e. B ( X .x. u ) = .1. /\ E. v e. B ( v .x. X ) = .1. ) ) ) ) |
| 9 |
7 8
|
bitr4id |
|- ( ph -> ( X e. U <-> ( E. u e. B ( X .x. u ) = .1. /\ E. v e. B ( v .x. X ) = .1. ) ) ) |
| 10 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 11 |
10 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
| 12 |
10 4
|
ringidval |
|- .1. = ( 0g ` ( mulGrp ` R ) ) |
| 13 |
10 3
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
| 14 |
10
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 15 |
6 14
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 16 |
11 12 13 15 5
|
mndlrinvb |
|- ( ph -> ( ( E. u e. B ( X .x. u ) = .1. /\ E. v e. B ( v .x. X ) = .1. ) <-> E. y e. B ( ( X .x. y ) = .1. /\ ( y .x. X ) = .1. ) ) ) |
| 17 |
9 16
|
bitrd |
|- ( ph -> ( X e. U <-> E. y e. B ( ( X .x. y ) = .1. /\ ( y .x. X ) = .1. ) ) ) |