Step |
Hyp |
Ref |
Expression |
1 |
|
isunit2.b |
|- B = ( Base ` R ) |
2 |
|
isunit2.u |
|- U = ( Unit ` R ) |
3 |
|
isunit2.m |
|- .x. = ( .r ` R ) |
4 |
|
isunit2.1 |
|- .1. = ( 1r ` R ) |
5 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
6 |
1 5 3
|
dvdsr |
|- ( X ( ||r ` R ) .1. <-> ( X e. B /\ E. v e. B ( v .x. X ) = .1. ) ) |
7 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
8 |
7 1
|
opprbas |
|- B = ( Base ` ( oppR ` R ) ) |
9 |
|
eqid |
|- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
10 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
11 |
8 9 10
|
dvdsr |
|- ( X ( ||r ` ( oppR ` R ) ) .1. <-> ( X e. B /\ E. u e. B ( u ( .r ` ( oppR ` R ) ) X ) = .1. ) ) |
12 |
1 3 7 10
|
opprmul |
|- ( u ( .r ` ( oppR ` R ) ) X ) = ( X .x. u ) |
13 |
12
|
eqeq1i |
|- ( ( u ( .r ` ( oppR ` R ) ) X ) = .1. <-> ( X .x. u ) = .1. ) |
14 |
13
|
rexbii |
|- ( E. u e. B ( u ( .r ` ( oppR ` R ) ) X ) = .1. <-> E. u e. B ( X .x. u ) = .1. ) |
15 |
14
|
anbi2i |
|- ( ( X e. B /\ E. u e. B ( u ( .r ` ( oppR ` R ) ) X ) = .1. ) <-> ( X e. B /\ E. u e. B ( X .x. u ) = .1. ) ) |
16 |
11 15
|
bitri |
|- ( X ( ||r ` ( oppR ` R ) ) .1. <-> ( X e. B /\ E. u e. B ( X .x. u ) = .1. ) ) |
17 |
6 16
|
anbi12ci |
|- ( ( X ( ||r ` R ) .1. /\ X ( ||r ` ( oppR ` R ) ) .1. ) <-> ( ( X e. B /\ E. u e. B ( X .x. u ) = .1. ) /\ ( X e. B /\ E. v e. B ( v .x. X ) = .1. ) ) ) |
18 |
2 4 5 7 9
|
isunit |
|- ( X e. U <-> ( X ( ||r ` R ) .1. /\ X ( ||r ` ( oppR ` R ) ) .1. ) ) |
19 |
|
anandi |
|- ( ( X e. B /\ ( E. u e. B ( X .x. u ) = .1. /\ E. v e. B ( v .x. X ) = .1. ) ) <-> ( ( X e. B /\ E. u e. B ( X .x. u ) = .1. ) /\ ( X e. B /\ E. v e. B ( v .x. X ) = .1. ) ) ) |
20 |
17 18 19
|
3bitr4i |
|- ( X e. U <-> ( X e. B /\ ( E. u e. B ( X .x. u ) = .1. /\ E. v e. B ( v .x. X ) = .1. ) ) ) |