Metamath Proof Explorer


Theorem iswrdsymb

Description: An arbitrary word is a word over an alphabet if all of its symbols belong to the alphabet. (Contributed by AV, 23-Jan-2021)

Ref Expression
Assertion iswrdsymb WWordVi0..^WWiVWWordV

Proof

Step Hyp Ref Expression
1 wrdfn WWordVWFn0..^W
2 1 anim1i WWordVi0..^WWiVWFn0..^Wi0..^WWiV
3 ffnfv W:0..^WVWFn0..^Wi0..^WWiV
4 2 3 sylibr WWordVi0..^WWiVW:0..^WV
5 iswrdi W:0..^WVWWordV
6 4 5 syl WWordVi0..^WWiVWWordV