Metamath Proof Explorer


Theorem itcoval

Description: The value of the function that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by AV, 2-May-2024)

Ref Expression
Assertion itcoval Could not format assertion : No typesetting found for |- ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-itco Could not format IterComp = ( f e. _V |-> seq 0 ( ( g e. _V , j e. _V |-> ( f o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom f ) , f ) ) ) ) : No typesetting found for |- IterComp = ( f e. _V |-> seq 0 ( ( g e. _V , j e. _V |-> ( f o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom f ) , f ) ) ) ) with typecode |-
2 eqidd f=F0=0
3 coeq1 f=Ffg=Fg
4 3 mpoeq3dv f=FgV,jVfg=gV,jVFg
5 dmeq f=Fdomf=domF
6 5 reseq2d f=FIdomf=IdomF
7 id f=Ff=F
8 6 7 ifeq12d f=Fifi=0Idomff=ifi=0IdomFF
9 8 mpteq2dv f=Fi0ifi=0Idomff=i0ifi=0IdomFF
10 2 4 9 seqeq123d f=Fseq0gV,jVfgi0ifi=0Idomff=seq0gV,jVFgi0ifi=0IdomFF
11 elex FVFV
12 seqex seq0gV,jVFgi0ifi=0IdomFFV
13 12 a1i FVseq0gV,jVFgi0ifi=0IdomFFV
14 1 10 11 13 fvmptd3 Could not format ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) : No typesetting found for |- ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) with typecode |-