Metamath Proof Explorer


Theorem itg1add

Description: The integral of a sum of simple functions is the sum of the integrals. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 φFdom1
i1fadd.2 φGdom1
Assertion itg1add φ1F+fG=1F+1G

Proof

Step Hyp Ref Expression
1 i1fadd.1 φFdom1
2 i1fadd.2 φGdom1
3 eqid i,jifi=0j=00volF-1iG-1j=i,jifi=0j=00volF-1iG-1j
4 eqid +ranF×ranG=+ranF×ranG
5 1 2 3 4 itg1addlem5 φ1F+fG=1F+1G