Metamath Proof Explorer


Theorem itgeq1d

Description: Equality theorem for an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis itgeq1d.aeqb φA=B
Assertion itgeq1d φACdx=BCdx

Proof

Step Hyp Ref Expression
1 itgeq1d.aeqb φA=B
2 itgeq1 A=BACdx=BCdx
3 1 2 syl φACdx=BCdx