Metamath Proof Explorer


Theorem mbfres2cn

Description: Measurability of a piecewise function: if F is measurable on subsets B and C of its domain, and these pieces make up all of A , then F is measurable on the whole domain. Similar to mbfres2 but here the theorem is extended to complex-valued functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses mbfres2cn.f φ F : A
mbfres2cn.b φ F B MblFn
mbfres2cn.c φ F C MblFn
mbfres2cn.a φ B C = A
Assertion mbfres2cn φ F MblFn

Proof

Step Hyp Ref Expression
1 mbfres2cn.f φ F : A
2 mbfres2cn.b φ F B MblFn
3 mbfres2cn.c φ F C MblFn
4 mbfres2cn.a φ B C = A
5 ref :
6 fco : F : A F : A
7 5 1 6 sylancr φ F : A
8 resco F B = F B
9 fresin F : A F B : A B
10 ismbfcn F B : A B F B MblFn F B MblFn F B MblFn
11 1 9 10 3syl φ F B MblFn F B MblFn F B MblFn
12 2 11 mpbid φ F B MblFn F B MblFn
13 12 simpld φ F B MblFn
14 8 13 eqeltrid φ F B MblFn
15 resco F C = F C
16 fresin F : A F C : A C
17 ismbfcn F C : A C F C MblFn F C MblFn F C MblFn
18 1 16 17 3syl φ F C MblFn F C MblFn F C MblFn
19 3 18 mpbid φ F C MblFn F C MblFn
20 19 simpld φ F C MblFn
21 15 20 eqeltrid φ F C MblFn
22 7 14 21 4 mbfres2 φ F MblFn
23 imf :
24 fco : F : A F : A
25 23 1 24 sylancr φ F : A
26 resco F B = F B
27 12 simprd φ F B MblFn
28 26 27 eqeltrid φ F B MblFn
29 resco F C = F C
30 19 simprd φ F C MblFn
31 29 30 eqeltrid φ F C MblFn
32 25 28 31 4 mbfres2 φ F MblFn
33 ismbfcn F : A F MblFn F MblFn F MblFn
34 1 33 syl φ F MblFn F MblFn F MblFn
35 22 32 34 mpbir2and φ F MblFn