Metamath Proof Explorer


Theorem iunopabOLD

Description: Obsolete version of iunopab as of 11-Dec-2024. (Contributed by Stefan O'Rear, 20-Feb-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion iunopabOLD zAxy|φ=xy|zAφ

Proof

Step Hyp Ref Expression
1 elopab wxy|φxyw=xyφ
2 1 rexbii zAwxy|φzAxyw=xyφ
3 rexcom4 zAxyw=xyφxzAyw=xyφ
4 rexcom4 zAyw=xyφyzAw=xyφ
5 r19.42v zAw=xyφw=xyzAφ
6 5 exbii yzAw=xyφyw=xyzAφ
7 4 6 bitri zAyw=xyφyw=xyzAφ
8 7 exbii xzAyw=xyφxyw=xyzAφ
9 3 8 bitri zAxyw=xyφxyw=xyzAφ
10 2 9 bitri zAwxy|φxyw=xyzAφ
11 10 abbii w|zAwxy|φ=w|xyw=xyzAφ
12 df-iun zAxy|φ=w|zAwxy|φ
13 df-opab xy|zAφ=w|xyw=xyzAφ
14 11 12 13 3eqtr4i zAxy|φ=xy|zAφ