Metamath Proof Explorer


Theorem iunss

Description: Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iunss xABCxABC

Proof

Step Hyp Ref Expression
1 df-iun xAB=y|xAyB
2 1 sseq1i xABCy|xAyBC
3 abss y|xAyBCyxAyByC
4 dfss2 BCyyByC
5 4 ralbii xABCxAyyByC
6 ralcom4 xAyyByCyxAyByC
7 r19.23v xAyByCxAyByC
8 7 albii yxAyByCyxAyByC
9 5 6 8 3bitrri yxAyByCxABC
10 2 3 9 3bitri xABCxABC