Metamath Proof Explorer


Theorem ixpiin

Description: The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015)

Ref Expression
Assertion ixpiin BxAyBC=yBxAC

Proof

Step Hyp Ref Expression
1 r19.28zv ByBfFnAxAfxCfFnAyBxAfxC
2 eliin fVfyBxACyBfxAC
3 2 elv fyBxACyBfxAC
4 vex fV
5 4 elixp fxACfFnAxAfxC
6 5 ralbii yBfxACyBfFnAxAfxC
7 3 6 bitri fyBxACyBfFnAxAfxC
8 4 elixp fxAyBCfFnAxAfxyBC
9 fvex fxV
10 eliin fxVfxyBCyBfxC
11 9 10 ax-mp fxyBCyBfxC
12 11 ralbii xAfxyBCxAyBfxC
13 ralcom xAyBfxCyBxAfxC
14 12 13 bitri xAfxyBCyBxAfxC
15 14 anbi2i fFnAxAfxyBCfFnAyBxAfxC
16 8 15 bitri fxAyBCfFnAyBxAfxC
17 1 7 16 3bitr4g BfyBxACfxAyBC
18 17 eqrdv ByBxAC=xAyBC
19 18 eqcomd BxAyBC=yBxAC