Metamath Proof Explorer


Theorem ixpin

Description: The intersection of two infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Assertion ixpin xABC=xABxAC

Proof

Step Hyp Ref Expression
1 anandi fFnAxAfxBxAfxCfFnAxAfxBfFnAxAfxC
2 elin fxBCfxBfxC
3 2 ralbii xAfxBCxAfxBfxC
4 r19.26 xAfxBfxCxAfxBxAfxC
5 3 4 bitri xAfxBCxAfxBxAfxC
6 5 anbi2i fFnAxAfxBCfFnAxAfxBxAfxC
7 vex fV
8 7 elixp fxABfFnAxAfxB
9 7 elixp fxACfFnAxAfxC
10 8 9 anbi12i fxABfxACfFnAxAfxBfFnAxAfxC
11 1 6 10 3bitr4i fFnAxAfxBCfxABfxAC
12 7 elixp fxABCfFnAxAfxBC
13 elin fxABxACfxABfxAC
14 11 12 13 3bitr4i fxABCfxABxAC
15 14 eqriv xABC=xABxAC