Metamath Proof Explorer


Theorem jca2r

Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 17-Oct-2010)

Ref Expression
Hypotheses jca2r.1 φψχ
jca2r.2 ψθ
Assertion jca2r φψθχ

Proof

Step Hyp Ref Expression
1 jca2r.1 φψχ
2 jca2r.2 ψθ
3 2 a1i φψθ
4 3 1 jcad φψθχ