Metamath Proof Explorer


Theorem jm2.25lem1

Description: Lemma for jm2.26 . (Contributed by Stefan O'Rear, 2-Oct-2014)

Ref Expression
Assertion jm2.25lem1 ABCDACDACDADBADBACBACB

Proof

Step Hyp Ref Expression
1 simpl1l ABCDACDACDADBADBA
2 simpl2l ABCDACDACDADBADBC
3 simpl2r ABCDACDACDADBADBD
4 simpl1r ABCDACDACDADBADBB
5 simpl3 ABCDACDACDADBADBACDACD
6 simpr ABCDACDACDADBADBADBADB
7 acongtr ACDBACDACDADBADBACBACB
8 1 2 3 4 5 6 7 syl222anc ABCDACDACDADBADBACBACB
9 simpl1l ABCDACDACDACBACBA
10 simpl2r ABCDACDACDACBACBD
11 simpl2l ABCDACDACDACBACBC
12 simpl1r ABCDACDACDACBACBB
13 simpl3 ABCDACDACDACBACBACDACD
14 acongsym ACDACDACDADCADC
15 9 11 10 13 14 syl31anc ABCDACDACDACBACBADCADC
16 simpr ABCDACDACDACBACBACBACB
17 acongtr ADCBADCADCACBACBADBADB
18 9 10 11 12 15 16 17 syl222anc ABCDACDACDACBACBADBADB
19 8 18 impbida ABCDACDACDADBADBACBACB