| Step |
Hyp |
Ref |
Expression |
| 1 |
|
congtr |
|
| 2 |
1
|
3expa |
|
| 3 |
2
|
orcd |
|
| 4 |
3
|
ex |
|
| 5 |
|
simpll |
|
| 6 |
|
znegcl |
|
| 7 |
|
znegcl |
|
| 8 |
6 7
|
anim12i |
|
| 9 |
8
|
ad2antlr |
|
| 10 |
|
simplll |
|
| 11 |
|
simplrl |
|
| 12 |
|
simplrr |
|
| 13 |
|
simpr |
|
| 14 |
|
congsym |
|
| 15 |
10 11 12 13 14
|
syl22anc |
|
| 16 |
15
|
ex |
|
| 17 |
|
zcn |
|
| 18 |
17
|
adantr |
|
| 19 |
|
zcn |
|
| 20 |
19
|
adantl |
|
| 21 |
18 20
|
neg2subd |
|
| 22 |
21
|
adantl |
|
| 23 |
22
|
eqcomd |
|
| 24 |
23
|
breq2d |
|
| 25 |
16 24
|
sylibd |
|
| 26 |
25
|
anim2d |
|
| 27 |
26
|
imp |
|
| 28 |
|
congtr |
|
| 29 |
5 9 27 28
|
syl3anc |
|
| 30 |
29
|
olcd |
|
| 31 |
30
|
ex |
|
| 32 |
|
simpll |
|
| 33 |
7
|
anim2i |
|
| 34 |
33
|
ad2antlr |
|
| 35 |
|
simpr |
|
| 36 |
|
congtr |
|
| 37 |
32 34 35 36
|
syl3anc |
|
| 38 |
37
|
olcd |
|
| 39 |
38
|
ex |
|
| 40 |
|
simpll |
|
| 41 |
6
|
anim1i |
|
| 42 |
41
|
ad2antlr |
|
| 43 |
|
simpl |
|
| 44 |
|
simpr |
|
| 45 |
43 44
|
anim12i |
|
| 46 |
45
|
an42s |
|
| 47 |
46
|
adantr |
|
| 48 |
7
|
adantl |
|
| 49 |
48
|
ad2antlr |
|
| 50 |
|
simpr |
|
| 51 |
|
congsym |
|
| 52 |
47 49 50 51
|
syl12anc |
|
| 53 |
52
|
ex |
|
| 54 |
18
|
negnegd |
|
| 55 |
54
|
oveq2d |
|
| 56 |
|
zcn |
|
| 57 |
56
|
adantr |
|
| 58 |
8 57
|
syl |
|
| 59 |
20 58
|
neg2subd |
|
| 60 |
55 59
|
eqtr3d |
|
| 61 |
60
|
adantl |
|
| 62 |
61
|
breq2d |
|
| 63 |
53 62
|
sylibd |
|
| 64 |
63
|
anim2d |
|
| 65 |
64
|
imp |
|
| 66 |
|
congtr |
|
| 67 |
40 42 65 66
|
syl3anc |
|
| 68 |
67
|
orcd |
|
| 69 |
68
|
ex |
|
| 70 |
4 31 39 69
|
ccased |
|
| 71 |
70
|
3impia |
|