Metamath Proof Explorer


Theorem acongeq12d

Description: Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014)

Ref Expression
Hypotheses acongeq12d.1 φB=C
acongeq12d.2 φD=E
Assertion acongeq12d φABDABDACEACE

Proof

Step Hyp Ref Expression
1 acongeq12d.1 φB=C
2 acongeq12d.2 φD=E
3 1 2 oveq12d φBD=CE
4 3 breq2d φABDACE
5 2 negeqd φD=E
6 1 5 oveq12d φBD=CE
7 6 breq2d φABDACE
8 4 7 orbi12d φABDABDACEACE