| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn |  | 
						
							| 2 |  | simpl |  | 
						
							| 3 |  | nnmulcl |  | 
						
							| 4 | 1 2 3 | sylancr |  | 
						
							| 5 |  | simpr |  | 
						
							| 6 |  | congrep |  | 
						
							| 7 | 4 5 6 | syl2anc |  | 
						
							| 8 |  | elfzelz |  | 
						
							| 9 | 8 | zred |  | 
						
							| 10 | 9 | ad2antrl |  | 
						
							| 11 |  | nnre |  | 
						
							| 12 | 11 | ad2antrr |  | 
						
							| 13 |  | elfzle1 |  | 
						
							| 14 | 13 | ad2antrl |  | 
						
							| 15 | 14 | anim1i |  | 
						
							| 16 | 8 | ad2antrl |  | 
						
							| 17 |  | 0zd |  | 
						
							| 18 |  | nnz |  | 
						
							| 19 | 18 | ad2antrr |  | 
						
							| 20 |  | elfz |  | 
						
							| 21 | 16 17 19 20 | syl3anc |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 | 15 22 | mpbird |  | 
						
							| 24 |  | simplrr |  | 
						
							| 25 | 24 | orcd |  | 
						
							| 26 |  | id |  | 
						
							| 27 |  | eqidd |  | 
						
							| 28 | 26 27 | acongeq12d |  | 
						
							| 29 | 28 | rspcev |  | 
						
							| 30 | 23 25 29 | syl2anc |  | 
						
							| 31 |  | simplll |  | 
						
							| 32 |  | simplrl |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 | 9 | 3ad2ant2 |  | 
						
							| 35 |  | 2re |  | 
						
							| 36 |  | remulcl |  | 
						
							| 37 | 35 11 36 | sylancr |  | 
						
							| 38 | 37 | 3ad2ant1 |  | 
						
							| 39 |  | 0zd |  | 
						
							| 40 |  | 2z |  | 
						
							| 41 |  | zmulcl |  | 
						
							| 42 | 40 18 41 | sylancr |  | 
						
							| 43 | 42 | 3ad2ant1 |  | 
						
							| 44 |  | simp2 |  | 
						
							| 45 |  | elfzm11 |  | 
						
							| 46 | 45 | biimpa |  | 
						
							| 47 | 39 43 44 46 | syl21anc |  | 
						
							| 48 | 47 | simp3d |  | 
						
							| 49 | 34 38 48 | ltled |  | 
						
							| 50 | 38 34 | subge0d |  | 
						
							| 51 | 49 50 | mpbird |  | 
						
							| 52 | 11 | 3ad2ant1 |  | 
						
							| 53 |  | nncn |  | 
						
							| 54 |  | 2times |  | 
						
							| 55 | 54 | oveq1d |  | 
						
							| 56 |  | pncan2 |  | 
						
							| 57 | 56 | anidms |  | 
						
							| 58 | 55 57 | eqtrd |  | 
						
							| 59 | 53 58 | syl |  | 
						
							| 60 | 59 | 3ad2ant1 |  | 
						
							| 61 |  | simp3 |  | 
						
							| 62 | 60 61 | eqbrtrd |  | 
						
							| 63 | 38 52 34 62 | subled |  | 
						
							| 64 | 51 63 | jca |  | 
						
							| 65 | 31 32 33 64 | syl3anc |  | 
						
							| 66 | 40 19 41 | sylancr |  | 
						
							| 67 | 66 16 | zsubcld |  | 
						
							| 68 |  | elfz |  | 
						
							| 69 | 67 17 19 68 | syl3anc |  | 
						
							| 70 | 69 | adantr |  | 
						
							| 71 | 65 70 | mpbird |  | 
						
							| 72 |  | simplr |  | 
						
							| 73 |  | simprr |  | 
						
							| 74 |  | congsym |  | 
						
							| 75 | 66 16 72 73 74 | syl22anc |  | 
						
							| 76 | 72 16 | zsubcld |  | 
						
							| 77 |  | dvdsadd |  | 
						
							| 78 | 66 76 77 | syl2anc |  | 
						
							| 79 | 75 78 | mpbid |  | 
						
							| 80 | 67 | zcnd |  | 
						
							| 81 |  | zcn |  | 
						
							| 82 | 81 | ad2antlr |  | 
						
							| 83 | 80 82 | subnegd |  | 
						
							| 84 | 66 | zcnd |  | 
						
							| 85 | 10 | recnd |  | 
						
							| 86 | 84 85 82 | subadd23d |  | 
						
							| 87 | 83 86 | eqtrd |  | 
						
							| 88 | 79 87 | breqtrrd |  | 
						
							| 89 | 88 | adantr |  | 
						
							| 90 | 89 | olcd |  | 
						
							| 91 |  | id |  | 
						
							| 92 |  | eqidd |  | 
						
							| 93 | 91 92 | acongeq12d |  | 
						
							| 94 | 93 | rspcev |  | 
						
							| 95 | 71 90 94 | syl2anc |  | 
						
							| 96 | 10 12 30 95 | lecasei |  | 
						
							| 97 | 7 96 | rexlimddv |  |