| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn |
|
| 2 |
|
simpl |
|
| 3 |
|
nnmulcl |
|
| 4 |
1 2 3
|
sylancr |
|
| 5 |
|
simpr |
|
| 6 |
|
congrep |
|
| 7 |
4 5 6
|
syl2anc |
|
| 8 |
|
elfzelz |
|
| 9 |
8
|
zred |
|
| 10 |
9
|
ad2antrl |
|
| 11 |
|
nnre |
|
| 12 |
11
|
ad2antrr |
|
| 13 |
|
elfzle1 |
|
| 14 |
13
|
ad2antrl |
|
| 15 |
14
|
anim1i |
|
| 16 |
8
|
ad2antrl |
|
| 17 |
|
0zd |
|
| 18 |
|
nnz |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
|
elfz |
|
| 21 |
16 17 19 20
|
syl3anc |
|
| 22 |
21
|
adantr |
|
| 23 |
15 22
|
mpbird |
|
| 24 |
|
simplrr |
|
| 25 |
24
|
orcd |
|
| 26 |
|
id |
|
| 27 |
|
eqidd |
|
| 28 |
26 27
|
acongeq12d |
|
| 29 |
28
|
rspcev |
|
| 30 |
23 25 29
|
syl2anc |
|
| 31 |
|
simplll |
|
| 32 |
|
simplrl |
|
| 33 |
|
simpr |
|
| 34 |
9
|
3ad2ant2 |
|
| 35 |
|
2re |
|
| 36 |
|
remulcl |
|
| 37 |
35 11 36
|
sylancr |
|
| 38 |
37
|
3ad2ant1 |
|
| 39 |
|
0zd |
|
| 40 |
|
2z |
|
| 41 |
|
zmulcl |
|
| 42 |
40 18 41
|
sylancr |
|
| 43 |
42
|
3ad2ant1 |
|
| 44 |
|
simp2 |
|
| 45 |
|
elfzm11 |
|
| 46 |
45
|
biimpa |
|
| 47 |
39 43 44 46
|
syl21anc |
|
| 48 |
47
|
simp3d |
|
| 49 |
34 38 48
|
ltled |
|
| 50 |
38 34
|
subge0d |
|
| 51 |
49 50
|
mpbird |
|
| 52 |
11
|
3ad2ant1 |
|
| 53 |
|
nncn |
|
| 54 |
|
2times |
|
| 55 |
54
|
oveq1d |
|
| 56 |
|
pncan2 |
|
| 57 |
56
|
anidms |
|
| 58 |
55 57
|
eqtrd |
|
| 59 |
53 58
|
syl |
|
| 60 |
59
|
3ad2ant1 |
|
| 61 |
|
simp3 |
|
| 62 |
60 61
|
eqbrtrd |
|
| 63 |
38 52 34 62
|
subled |
|
| 64 |
51 63
|
jca |
|
| 65 |
31 32 33 64
|
syl3anc |
|
| 66 |
40 19 41
|
sylancr |
|
| 67 |
66 16
|
zsubcld |
|
| 68 |
|
elfz |
|
| 69 |
67 17 19 68
|
syl3anc |
|
| 70 |
69
|
adantr |
|
| 71 |
65 70
|
mpbird |
|
| 72 |
|
simplr |
|
| 73 |
|
simprr |
|
| 74 |
|
congsym |
|
| 75 |
66 16 72 73 74
|
syl22anc |
|
| 76 |
72 16
|
zsubcld |
|
| 77 |
|
dvdsadd |
|
| 78 |
66 76 77
|
syl2anc |
|
| 79 |
75 78
|
mpbid |
|
| 80 |
67
|
zcnd |
|
| 81 |
|
zcn |
|
| 82 |
81
|
ad2antlr |
|
| 83 |
80 82
|
subnegd |
|
| 84 |
66
|
zcnd |
|
| 85 |
10
|
recnd |
|
| 86 |
84 85 82
|
subadd23d |
|
| 87 |
83 86
|
eqtrd |
|
| 88 |
79 87
|
breqtrrd |
|
| 89 |
88
|
adantr |
|
| 90 |
89
|
olcd |
|
| 91 |
|
id |
|
| 92 |
|
eqidd |
|
| 93 |
91 92
|
acongeq12d |
|
| 94 |
93
|
rspcev |
|
| 95 |
71 90 94
|
syl2anc |
|
| 96 |
10 12 30 95
|
lecasei |
|
| 97 |
7 96
|
rexlimddv |
|