Metamath Proof Explorer


Theorem congrep

Description: Every integer is congruent to some number in the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014)

Ref Expression
Assertion congrep ANa0A1AaN

Proof

Step Hyp Ref Expression
1 zmodfz NANmodA0A1
2 1 ancoms ANNmodA0A1
3 nnz AA
4 3 adantr ANA
5 simpr ANN
6 zmodcl NANmodA0
7 6 ancoms ANNmodA0
8 7 nn0zd ANNmodA
9 zre NN
10 nnrp AA+
11 moddifz NA+NNmodAA
12 9 10 11 syl2anr ANNNmodAA
13 nnne0 AA0
14 13 adantr ANA0
15 5 8 zsubcld ANNNmodA
16 dvdsval2 AA0NNmodAANNmodANNmodAA
17 4 14 15 16 syl3anc ANANNmodANNmodAA
18 12 17 mpbird ANANNmodA
19 congsym ANNmodAANNmodAANmodAN
20 4 5 8 18 19 syl22anc ANANmodAN
21 oveq1 a=NmodAaN=NmodAN
22 21 breq2d a=NmodAAaNANmodAN
23 22 rspcev NmodA0A1ANmodANa0A1AaN
24 2 20 23 syl2anc ANa0A1AaN