Step |
Hyp |
Ref |
Expression |
1 |
|
zmodfz |
|- ( ( N e. ZZ /\ A e. NN ) -> ( N mod A ) e. ( 0 ... ( A - 1 ) ) ) |
2 |
1
|
ancoms |
|- ( ( A e. NN /\ N e. ZZ ) -> ( N mod A ) e. ( 0 ... ( A - 1 ) ) ) |
3 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
4 |
3
|
adantr |
|- ( ( A e. NN /\ N e. ZZ ) -> A e. ZZ ) |
5 |
|
simpr |
|- ( ( A e. NN /\ N e. ZZ ) -> N e. ZZ ) |
6 |
|
zmodcl |
|- ( ( N e. ZZ /\ A e. NN ) -> ( N mod A ) e. NN0 ) |
7 |
6
|
ancoms |
|- ( ( A e. NN /\ N e. ZZ ) -> ( N mod A ) e. NN0 ) |
8 |
7
|
nn0zd |
|- ( ( A e. NN /\ N e. ZZ ) -> ( N mod A ) e. ZZ ) |
9 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
10 |
|
nnrp |
|- ( A e. NN -> A e. RR+ ) |
11 |
|
moddifz |
|- ( ( N e. RR /\ A e. RR+ ) -> ( ( N - ( N mod A ) ) / A ) e. ZZ ) |
12 |
9 10 11
|
syl2anr |
|- ( ( A e. NN /\ N e. ZZ ) -> ( ( N - ( N mod A ) ) / A ) e. ZZ ) |
13 |
|
nnne0 |
|- ( A e. NN -> A =/= 0 ) |
14 |
13
|
adantr |
|- ( ( A e. NN /\ N e. ZZ ) -> A =/= 0 ) |
15 |
5 8
|
zsubcld |
|- ( ( A e. NN /\ N e. ZZ ) -> ( N - ( N mod A ) ) e. ZZ ) |
16 |
|
dvdsval2 |
|- ( ( A e. ZZ /\ A =/= 0 /\ ( N - ( N mod A ) ) e. ZZ ) -> ( A || ( N - ( N mod A ) ) <-> ( ( N - ( N mod A ) ) / A ) e. ZZ ) ) |
17 |
4 14 15 16
|
syl3anc |
|- ( ( A e. NN /\ N e. ZZ ) -> ( A || ( N - ( N mod A ) ) <-> ( ( N - ( N mod A ) ) / A ) e. ZZ ) ) |
18 |
12 17
|
mpbird |
|- ( ( A e. NN /\ N e. ZZ ) -> A || ( N - ( N mod A ) ) ) |
19 |
|
congsym |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ ( ( N mod A ) e. ZZ /\ A || ( N - ( N mod A ) ) ) ) -> A || ( ( N mod A ) - N ) ) |
20 |
4 5 8 18 19
|
syl22anc |
|- ( ( A e. NN /\ N e. ZZ ) -> A || ( ( N mod A ) - N ) ) |
21 |
|
oveq1 |
|- ( a = ( N mod A ) -> ( a - N ) = ( ( N mod A ) - N ) ) |
22 |
21
|
breq2d |
|- ( a = ( N mod A ) -> ( A || ( a - N ) <-> A || ( ( N mod A ) - N ) ) ) |
23 |
22
|
rspcev |
|- ( ( ( N mod A ) e. ( 0 ... ( A - 1 ) ) /\ A || ( ( N mod A ) - N ) ) -> E. a e. ( 0 ... ( A - 1 ) ) A || ( a - N ) ) |
24 |
2 20 23
|
syl2anc |
|- ( ( A e. NN /\ N e. ZZ ) -> E. a e. ( 0 ... ( A - 1 ) ) A || ( a - N ) ) |