Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
2 |
1
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> B e. CC ) |
3 |
2
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) -> B e. CC ) |
4 |
|
zcn |
|- ( C e. ZZ -> C e. CC ) |
5 |
4
|
3ad2ant3 |
|- ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> C e. CC ) |
6 |
5
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) -> C e. CC ) |
7 |
|
zsubcl |
|- ( ( B e. ZZ /\ C e. ZZ ) -> ( B - C ) e. ZZ ) |
8 |
7
|
3adant1 |
|- ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> ( B - C ) e. ZZ ) |
9 |
8
|
zcnd |
|- ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> ( B - C ) e. CC ) |
10 |
9
|
abscld |
|- ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> ( abs ` ( B - C ) ) e. RR ) |
11 |
10
|
adantr |
|- ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) -> ( abs ` ( B - C ) ) e. RR ) |
12 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
13 |
12
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> A e. RR ) |
14 |
13
|
adantr |
|- ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) -> A e. RR ) |
15 |
11 14
|
ltnled |
|- ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) -> ( ( abs ` ( B - C ) ) < A <-> -. A <_ ( abs ` ( B - C ) ) ) ) |
16 |
15
|
biimpa |
|- ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) -> -. A <_ ( abs ` ( B - C ) ) ) |
17 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
18 |
17
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> A e. ZZ ) |
19 |
18
|
ad3antrrr |
|- ( ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) /\ ( B - C ) =/= 0 ) -> A e. ZZ ) |
20 |
8
|
ad3antrrr |
|- ( ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) /\ ( B - C ) =/= 0 ) -> ( B - C ) e. ZZ ) |
21 |
|
simpr |
|- ( ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) /\ ( B - C ) =/= 0 ) -> ( B - C ) =/= 0 ) |
22 |
19 20 21
|
3jca |
|- ( ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) /\ ( B - C ) =/= 0 ) -> ( A e. ZZ /\ ( B - C ) e. ZZ /\ ( B - C ) =/= 0 ) ) |
23 |
|
simpllr |
|- ( ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) /\ ( B - C ) =/= 0 ) -> A || ( B - C ) ) |
24 |
|
dvdsleabs |
|- ( ( A e. ZZ /\ ( B - C ) e. ZZ /\ ( B - C ) =/= 0 ) -> ( A || ( B - C ) -> A <_ ( abs ` ( B - C ) ) ) ) |
25 |
22 23 24
|
sylc |
|- ( ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) /\ ( B - C ) =/= 0 ) -> A <_ ( abs ` ( B - C ) ) ) |
26 |
25
|
ex |
|- ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) -> ( ( B - C ) =/= 0 -> A <_ ( abs ` ( B - C ) ) ) ) |
27 |
26
|
necon1bd |
|- ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) -> ( -. A <_ ( abs ` ( B - C ) ) -> ( B - C ) = 0 ) ) |
28 |
16 27
|
mpd |
|- ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) -> ( B - C ) = 0 ) |
29 |
3 6 28
|
subeq0d |
|- ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) -> B = C ) |
30 |
|
oveq1 |
|- ( B = C -> ( B - C ) = ( C - C ) ) |
31 |
30
|
adantl |
|- ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ B = C ) -> ( B - C ) = ( C - C ) ) |
32 |
5
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ B = C ) -> C e. CC ) |
33 |
32
|
subidd |
|- ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ B = C ) -> ( C - C ) = 0 ) |
34 |
31 33
|
eqtrd |
|- ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ B = C ) -> ( B - C ) = 0 ) |
35 |
34
|
abs00bd |
|- ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ B = C ) -> ( abs ` ( B - C ) ) = 0 ) |
36 |
|
nngt0 |
|- ( A e. NN -> 0 < A ) |
37 |
36
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> 0 < A ) |
38 |
37
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ B = C ) -> 0 < A ) |
39 |
35 38
|
eqbrtrd |
|- ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ B = C ) -> ( abs ` ( B - C ) ) < A ) |
40 |
29 39
|
impbida |
|- ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) -> ( ( abs ` ( B - C ) ) < A <-> B = C ) ) |