| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn |  |-  ( B e. ZZ -> B e. CC ) | 
						
							| 2 | 1 | 3ad2ant2 |  |-  ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> B e. CC ) | 
						
							| 3 | 2 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) -> B e. CC ) | 
						
							| 4 |  | zcn |  |-  ( C e. ZZ -> C e. CC ) | 
						
							| 5 | 4 | 3ad2ant3 |  |-  ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> C e. CC ) | 
						
							| 6 | 5 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) -> C e. CC ) | 
						
							| 7 |  | zsubcl |  |-  ( ( B e. ZZ /\ C e. ZZ ) -> ( B - C ) e. ZZ ) | 
						
							| 8 | 7 | 3adant1 |  |-  ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> ( B - C ) e. ZZ ) | 
						
							| 9 | 8 | zcnd |  |-  ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> ( B - C ) e. CC ) | 
						
							| 10 | 9 | abscld |  |-  ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> ( abs ` ( B - C ) ) e. RR ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) -> ( abs ` ( B - C ) ) e. RR ) | 
						
							| 12 |  | nnre |  |-  ( A e. NN -> A e. RR ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> A e. RR ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) -> A e. RR ) | 
						
							| 15 | 11 14 | ltnled |  |-  ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) -> ( ( abs ` ( B - C ) ) < A <-> -. A <_ ( abs ` ( B - C ) ) ) ) | 
						
							| 16 | 15 | biimpa |  |-  ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) -> -. A <_ ( abs ` ( B - C ) ) ) | 
						
							| 17 |  | nnz |  |-  ( A e. NN -> A e. ZZ ) | 
						
							| 18 | 17 | 3ad2ant1 |  |-  ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> A e. ZZ ) | 
						
							| 19 | 18 | ad3antrrr |  |-  ( ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) /\ ( B - C ) =/= 0 ) -> A e. ZZ ) | 
						
							| 20 | 8 | ad3antrrr |  |-  ( ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) /\ ( B - C ) =/= 0 ) -> ( B - C ) e. ZZ ) | 
						
							| 21 |  | simpr |  |-  ( ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) /\ ( B - C ) =/= 0 ) -> ( B - C ) =/= 0 ) | 
						
							| 22 | 19 20 21 | 3jca |  |-  ( ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) /\ ( B - C ) =/= 0 ) -> ( A e. ZZ /\ ( B - C ) e. ZZ /\ ( B - C ) =/= 0 ) ) | 
						
							| 23 |  | simpllr |  |-  ( ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) /\ ( B - C ) =/= 0 ) -> A || ( B - C ) ) | 
						
							| 24 |  | dvdsleabs |  |-  ( ( A e. ZZ /\ ( B - C ) e. ZZ /\ ( B - C ) =/= 0 ) -> ( A || ( B - C ) -> A <_ ( abs ` ( B - C ) ) ) ) | 
						
							| 25 | 22 23 24 | sylc |  |-  ( ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) /\ ( B - C ) =/= 0 ) -> A <_ ( abs ` ( B - C ) ) ) | 
						
							| 26 | 25 | ex |  |-  ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) -> ( ( B - C ) =/= 0 -> A <_ ( abs ` ( B - C ) ) ) ) | 
						
							| 27 | 26 | necon1bd |  |-  ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) -> ( -. A <_ ( abs ` ( B - C ) ) -> ( B - C ) = 0 ) ) | 
						
							| 28 | 16 27 | mpd |  |-  ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) -> ( B - C ) = 0 ) | 
						
							| 29 | 3 6 28 | subeq0d |  |-  ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ ( abs ` ( B - C ) ) < A ) -> B = C ) | 
						
							| 30 |  | oveq1 |  |-  ( B = C -> ( B - C ) = ( C - C ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ B = C ) -> ( B - C ) = ( C - C ) ) | 
						
							| 32 | 5 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ B = C ) -> C e. CC ) | 
						
							| 33 | 32 | subidd |  |-  ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ B = C ) -> ( C - C ) = 0 ) | 
						
							| 34 | 31 33 | eqtrd |  |-  ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ B = C ) -> ( B - C ) = 0 ) | 
						
							| 35 | 34 | abs00bd |  |-  ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ B = C ) -> ( abs ` ( B - C ) ) = 0 ) | 
						
							| 36 |  | nngt0 |  |-  ( A e. NN -> 0 < A ) | 
						
							| 37 | 36 | 3ad2ant1 |  |-  ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) -> 0 < A ) | 
						
							| 38 | 37 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ B = C ) -> 0 < A ) | 
						
							| 39 | 35 38 | eqbrtrd |  |-  ( ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) /\ B = C ) -> ( abs ` ( B - C ) ) < A ) | 
						
							| 40 | 29 39 | impbida |  |-  ( ( ( A e. NN /\ B e. ZZ /\ C e. ZZ ) /\ A || ( B - C ) ) -> ( ( abs ` ( B - C ) ) < A <-> B = C ) ) |