Metamath Proof Explorer


Theorem congabseq

Description: If two integers are congruent, they are either equal or separated by at least the congruence base. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion congabseq ABCABCBC<AB=C

Proof

Step Hyp Ref Expression
1 zcn BB
2 1 3ad2ant2 ABCB
3 2 ad2antrr ABCABCBC<AB
4 zcn CC
5 4 3ad2ant3 ABCC
6 5 ad2antrr ABCABCBC<AC
7 zsubcl BCBC
8 7 3adant1 ABCBC
9 8 zcnd ABCBC
10 9 abscld ABCBC
11 10 adantr ABCABCBC
12 nnre AA
13 12 3ad2ant1 ABCA
14 13 adantr ABCABCA
15 11 14 ltnled ABCABCBC<A¬ABC
16 15 biimpa ABCABCBC<A¬ABC
17 nnz AA
18 17 3ad2ant1 ABCA
19 18 ad3antrrr ABCABCBC<ABC0A
20 8 ad3antrrr ABCABCBC<ABC0BC
21 simpr ABCABCBC<ABC0BC0
22 19 20 21 3jca ABCABCBC<ABC0ABCBC0
23 simpllr ABCABCBC<ABC0ABC
24 dvdsleabs ABCBC0ABCABC
25 22 23 24 sylc ABCABCBC<ABC0ABC
26 25 ex ABCABCBC<ABC0ABC
27 26 necon1bd ABCABCBC<A¬ABCBC=0
28 16 27 mpd ABCABCBC<ABC=0
29 3 6 28 subeq0d ABCABCBC<AB=C
30 oveq1 B=CBC=CC
31 30 adantl ABCABCB=CBC=CC
32 5 ad2antrr ABCABCB=CC
33 32 subidd ABCABCB=CCC=0
34 31 33 eqtrd ABCABCB=CBC=0
35 34 abs00bd ABCABCB=CBC=0
36 nngt0 A0<A
37 36 3ad2ant1 ABC0<A
38 37 ad2antrr ABCABCB=C0<A
39 35 38 eqbrtrd ABCABCB=CBC<A
40 29 39 impbida ABCABCBC<AB=C