Description: Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | acongeq12d.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
| acongeq12d.2 | ⊢ ( 𝜑 → 𝐷 = 𝐸 ) | ||
| Assertion | acongeq12d | ⊢ ( 𝜑 → ( ( 𝐴 ∥ ( 𝐵 − 𝐷 ) ∨ 𝐴 ∥ ( 𝐵 − - 𝐷 ) ) ↔ ( 𝐴 ∥ ( 𝐶 − 𝐸 ) ∨ 𝐴 ∥ ( 𝐶 − - 𝐸 ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | acongeq12d.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
| 2 | acongeq12d.2 | ⊢ ( 𝜑 → 𝐷 = 𝐸 ) | |
| 3 | 1 2 | oveq12d | ⊢ ( 𝜑 → ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐸 ) ) | 
| 4 | 3 | breq2d | ⊢ ( 𝜑 → ( 𝐴 ∥ ( 𝐵 − 𝐷 ) ↔ 𝐴 ∥ ( 𝐶 − 𝐸 ) ) ) | 
| 5 | 2 | negeqd | ⊢ ( 𝜑 → - 𝐷 = - 𝐸 ) | 
| 6 | 1 5 | oveq12d | ⊢ ( 𝜑 → ( 𝐵 − - 𝐷 ) = ( 𝐶 − - 𝐸 ) ) | 
| 7 | 6 | breq2d | ⊢ ( 𝜑 → ( 𝐴 ∥ ( 𝐵 − - 𝐷 ) ↔ 𝐴 ∥ ( 𝐶 − - 𝐸 ) ) ) | 
| 8 | 4 7 | orbi12d | ⊢ ( 𝜑 → ( ( 𝐴 ∥ ( 𝐵 − 𝐷 ) ∨ 𝐴 ∥ ( 𝐵 − - 𝐷 ) ) ↔ ( 𝐴 ∥ ( 𝐶 − 𝐸 ) ∨ 𝐴 ∥ ( 𝐶 − - 𝐸 ) ) ) ) |