Metamath Proof Explorer


Theorem jm2.27dlem4

Description: Lemma for rmydioph . Infer NN -hood of large numbers. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Hypotheses jm2.27dlem3.1 A
jm2.27dlem4.2 B = A + 1
Assertion jm2.27dlem4 B

Proof

Step Hyp Ref Expression
1 jm2.27dlem3.1 A
2 jm2.27dlem4.2 B = A + 1
3 peano2nn A A + 1
4 1 3 ax-mp A + 1
5 2 4 eqeltri B