Metamath Proof Explorer


Theorem joindm3

Description: The join of any two elements always exists iff all unordered pairs have LUB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024)

Ref Expression
Hypotheses joindm2.b B=BaseK
joindm2.k φKV
joindm2.u U=lubK
joindm2.j ˙=joinK
joindm3.l ˙=K
Assertion joindm3 φdom˙=B×BxByB∃!zBx˙zy˙zwBx˙wy˙wz˙w

Proof

Step Hyp Ref Expression
1 joindm2.b B=BaseK
2 joindm2.k φKV
3 joindm2.u U=lubK
4 joindm2.j ˙=joinK
5 joindm3.l ˙=K
6 1 2 3 4 joindm2 φdom˙=B×BxByBxydomU
7 simprl φxByBxB
8 simprr φxByByB
9 7 8 prssd φxByBxyB
10 biid vxyv˙zwBvxyv˙wz˙wvxyv˙zwBvxyv˙wz˙w
11 1 5 3 10 2 lubeldm φxydomUxyB∃!zBvxyv˙zwBvxyv˙wz˙w
12 11 baibd φxyBxydomU∃!zBvxyv˙zwBvxyv˙wz˙w
13 9 12 syldan φxByBxydomU∃!zBvxyv˙zwBvxyv˙wz˙w
14 2 adantr φxByBKV
15 1 5 4 14 7 8 joinval2lem xByBvxyv˙zwBvxyv˙wz˙wx˙zy˙zwBx˙wy˙wz˙w
16 15 reubidv xByB∃!zBvxyv˙zwBvxyv˙wz˙w∃!zBx˙zy˙zwBx˙wy˙wz˙w
17 16 adantl φxByB∃!zBvxyv˙zwBvxyv˙wz˙w∃!zBx˙zy˙zwBx˙wy˙wz˙w
18 13 17 bitrd φxByBxydomU∃!zBx˙zy˙zwBx˙wy˙wz˙w
19 18 2ralbidva φxByBxydomUxByB∃!zBx˙zy˙zwBx˙wy˙wz˙w
20 6 19 bitrd φdom˙=B×BxByB∃!zBx˙zy˙zwBx˙wy˙wz˙w