Metamath Proof Explorer


Theorem joinle

Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011)

Ref Expression
Hypotheses joinle.b B=BaseK
joinle.l ˙=K
joinle.j ˙=joinK
joinle.k φKPoset
joinle.x φXB
joinle.y φYB
joinle.z φZB
joinle.e φXYdom˙
Assertion joinle φX˙ZY˙ZX˙Y˙Z

Proof

Step Hyp Ref Expression
1 joinle.b B=BaseK
2 joinle.l ˙=K
3 joinle.j ˙=joinK
4 joinle.k φKPoset
5 joinle.x φXB
6 joinle.y φYB
7 joinle.z φZB
8 joinle.e φXYdom˙
9 breq2 z=ZX˙zX˙Z
10 breq2 z=ZY˙zY˙Z
11 9 10 anbi12d z=ZX˙zY˙zX˙ZY˙Z
12 breq2 z=ZX˙Y˙zX˙Y˙Z
13 11 12 imbi12d z=ZX˙zY˙zX˙Y˙zX˙ZY˙ZX˙Y˙Z
14 1 2 3 4 5 6 8 joinlem φX˙X˙YY˙X˙YzBX˙zY˙zX˙Y˙z
15 14 simprd φzBX˙zY˙zX˙Y˙z
16 13 15 7 rspcdva φX˙ZY˙ZX˙Y˙Z
17 1 2 3 4 5 6 8 lejoin1 φX˙X˙Y
18 1 3 4 5 6 8 joincl φX˙YB
19 1 2 postr KPosetXBX˙YBZBX˙X˙YX˙Y˙ZX˙Z
20 4 5 18 7 19 syl13anc φX˙X˙YX˙Y˙ZX˙Z
21 17 20 mpand φX˙Y˙ZX˙Z
22 1 2 3 4 5 6 8 lejoin2 φY˙X˙Y
23 1 2 postr KPosetYBX˙YBZBY˙X˙YX˙Y˙ZY˙Z
24 4 6 18 7 23 syl13anc φY˙X˙YX˙Y˙ZY˙Z
25 22 24 mpand φX˙Y˙ZY˙Z
26 21 25 jcad φX˙Y˙ZX˙ZY˙Z
27 16 26 impbid φX˙ZY˙ZX˙Y˙Z