Metamath Proof Explorer


Theorem jplem2

Description: Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses jp.1 S = x C norm proj x u 2
jp.2 A C
Assertion jplem2 u norm u = 1 u A S A = 1

Proof

Step Hyp Ref Expression
1 jp.1 S = x C norm proj x u 2
2 jp.2 A C
3 2 jplem1 u norm u = 1 u A norm proj A u 2 = 1
4 1 strlem2 A C S A = norm proj A u 2
5 2 4 ax-mp S A = norm proj A u 2
6 5 eqeq1i S A = 1 norm proj A u 2 = 1
7 3 6 bitr4di u norm u = 1 u A S A = 1