| Step | Hyp | Ref | Expression | 
						
							| 1 |  | jp.1 | ⊢ 𝑆  =  ( 𝑥  ∈   Cℋ   ↦  ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) ) | 
						
							| 2 |  | jp.2 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 3 | 2 | jplem1 | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑢  ∈  𝐴  ↔  ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 )  =  1 ) ) | 
						
							| 4 | 1 | strlem2 | ⊢ ( 𝐴  ∈   Cℋ   →  ( 𝑆 ‘ 𝐴 )  =  ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) ) | 
						
							| 5 | 2 4 | ax-mp | ⊢ ( 𝑆 ‘ 𝐴 )  =  ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) | 
						
							| 6 | 5 | eqeq1i | ⊢ ( ( 𝑆 ‘ 𝐴 )  =  1  ↔  ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 )  =  1 ) | 
						
							| 7 | 3 6 | bitr4di | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑢  ∈  𝐴  ↔  ( 𝑆 ‘ 𝐴 )  =  1 ) ) |