Metamath Proof Explorer


Theorem jplem2

Description: Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses jp.1 𝑆 = ( 𝑥C ↦ ( ( norm ‘ ( ( proj𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) )
jp.2 𝐴C
Assertion jplem2 ( ( 𝑢 ∈ ℋ ∧ ( norm𝑢 ) = 1 ) → ( 𝑢𝐴 ↔ ( 𝑆𝐴 ) = 1 ) )

Proof

Step Hyp Ref Expression
1 jp.1 𝑆 = ( 𝑥C ↦ ( ( norm ‘ ( ( proj𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) )
2 jp.2 𝐴C
3 2 jplem1 ( ( 𝑢 ∈ ℋ ∧ ( norm𝑢 ) = 1 ) → ( 𝑢𝐴 ↔ ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = 1 ) )
4 1 strlem2 ( 𝐴C → ( 𝑆𝐴 ) = ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) )
5 2 4 ax-mp ( 𝑆𝐴 ) = ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ↑ 2 )
6 5 eqeq1i ( ( 𝑆𝐴 ) = 1 ↔ ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = 1 )
7 3 6 bitr4di ( ( 𝑢 ∈ ℋ ∧ ( norm𝑢 ) = 1 ) → ( 𝑢𝐴 ↔ ( 𝑆𝐴 ) = 1 ) )