| Step | Hyp | Ref | Expression | 
						
							| 1 |  | jp.1 | ⊢ 𝑆  =  ( 𝑥  ∈   Cℋ   ↦  ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) ) | 
						
							| 2 |  | jp.2 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 3 |  | jp.3 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 4 |  | elin | ⊢ ( 𝑢  ∈  ( 𝐴  ∩  𝐵 )  ↔  ( 𝑢  ∈  𝐴  ∧  𝑢  ∈  𝐵 ) ) | 
						
							| 5 | 1 2 | jplem2 | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑢  ∈  𝐴  ↔  ( 𝑆 ‘ 𝐴 )  =  1 ) ) | 
						
							| 6 | 1 3 | jplem2 | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑢  ∈  𝐵  ↔  ( 𝑆 ‘ 𝐵 )  =  1 ) ) | 
						
							| 7 | 5 6 | anbi12d | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( ( 𝑢  ∈  𝐴  ∧  𝑢  ∈  𝐵 )  ↔  ( ( 𝑆 ‘ 𝐴 )  =  1  ∧  ( 𝑆 ‘ 𝐵 )  =  1 ) ) ) | 
						
							| 8 | 4 7 | bitrid | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑢  ∈  ( 𝐴  ∩  𝐵 )  ↔  ( ( 𝑆 ‘ 𝐴 )  =  1  ∧  ( 𝑆 ‘ 𝐵 )  =  1 ) ) ) | 
						
							| 9 | 2 3 | chincli | ⊢ ( 𝐴  ∩  𝐵 )  ∈   Cℋ | 
						
							| 10 | 1 9 | jplem2 | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑢  ∈  ( 𝐴  ∩  𝐵 )  ↔  ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) )  =  1 ) ) | 
						
							| 11 | 8 10 | bitr3d | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( ( ( 𝑆 ‘ 𝐴 )  =  1  ∧  ( 𝑆 ‘ 𝐵 )  =  1 )  ↔  ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) )  =  1 ) ) |