Step |
Hyp |
Ref |
Expression |
1 |
|
jp.1 |
⊢ 𝑆 = ( 𝑥 ∈ Cℋ ↦ ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) ) |
2 |
|
jp.2 |
⊢ 𝐴 ∈ Cℋ |
3 |
|
jp.3 |
⊢ 𝐵 ∈ Cℋ |
4 |
|
elin |
⊢ ( 𝑢 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ) |
5 |
1 2
|
jplem2 |
⊢ ( ( 𝑢 ∈ ℋ ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( 𝑢 ∈ 𝐴 ↔ ( 𝑆 ‘ 𝐴 ) = 1 ) ) |
6 |
1 3
|
jplem2 |
⊢ ( ( 𝑢 ∈ ℋ ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( 𝑢 ∈ 𝐵 ↔ ( 𝑆 ‘ 𝐵 ) = 1 ) ) |
7 |
5 6
|
anbi12d |
⊢ ( ( 𝑢 ∈ ℋ ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ↔ ( ( 𝑆 ‘ 𝐴 ) = 1 ∧ ( 𝑆 ‘ 𝐵 ) = 1 ) ) ) |
8 |
4 7
|
syl5bb |
⊢ ( ( 𝑢 ∈ ℋ ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( 𝑢 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( ( 𝑆 ‘ 𝐴 ) = 1 ∧ ( 𝑆 ‘ 𝐵 ) = 1 ) ) ) |
9 |
2 3
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
10 |
1 9
|
jplem2 |
⊢ ( ( 𝑢 ∈ ℋ ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( 𝑢 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) = 1 ) ) |
11 |
8 10
|
bitr3d |
⊢ ( ( 𝑢 ∈ ℋ ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( ( ( 𝑆 ‘ 𝐴 ) = 1 ∧ ( 𝑆 ‘ 𝐵 ) = 1 ) ↔ ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) = 1 ) ) |