| Step | Hyp | Ref | Expression | 
						
							| 1 |  | jp.1 |  |-  S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) | 
						
							| 2 |  | jp.2 |  |-  A e. CH | 
						
							| 3 |  | jp.3 |  |-  B e. CH | 
						
							| 4 |  | elin |  |-  ( u e. ( A i^i B ) <-> ( u e. A /\ u e. B ) ) | 
						
							| 5 | 1 2 | jplem2 |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. A <-> ( S ` A ) = 1 ) ) | 
						
							| 6 | 1 3 | jplem2 |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. B <-> ( S ` B ) = 1 ) ) | 
						
							| 7 | 5 6 | anbi12d |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( ( u e. A /\ u e. B ) <-> ( ( S ` A ) = 1 /\ ( S ` B ) = 1 ) ) ) | 
						
							| 8 | 4 7 | bitrid |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. ( A i^i B ) <-> ( ( S ` A ) = 1 /\ ( S ` B ) = 1 ) ) ) | 
						
							| 9 | 2 3 | chincli |  |-  ( A i^i B ) e. CH | 
						
							| 10 | 1 9 | jplem2 |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. ( A i^i B ) <-> ( S ` ( A i^i B ) ) = 1 ) ) | 
						
							| 11 | 8 10 | bitr3d |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( ( ( S ` A ) = 1 /\ ( S ` B ) = 1 ) <-> ( S ` ( A i^i B ) ) = 1 ) ) |