Step |
Hyp |
Ref |
Expression |
1 |
|
jp.1 |
|- S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) |
2 |
|
jp.2 |
|- A e. CH |
3 |
|
jp.3 |
|- B e. CH |
4 |
|
elin |
|- ( u e. ( A i^i B ) <-> ( u e. A /\ u e. B ) ) |
5 |
1 2
|
jplem2 |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. A <-> ( S ` A ) = 1 ) ) |
6 |
1 3
|
jplem2 |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. B <-> ( S ` B ) = 1 ) ) |
7 |
5 6
|
anbi12d |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( ( u e. A /\ u e. B ) <-> ( ( S ` A ) = 1 /\ ( S ` B ) = 1 ) ) ) |
8 |
4 7
|
syl5bb |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. ( A i^i B ) <-> ( ( S ` A ) = 1 /\ ( S ` B ) = 1 ) ) ) |
9 |
2 3
|
chincli |
|- ( A i^i B ) e. CH |
10 |
1 9
|
jplem2 |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. ( A i^i B ) <-> ( S ` ( A i^i B ) ) = 1 ) ) |
11 |
8 10
|
bitr3d |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( ( ( S ` A ) = 1 /\ ( S ` B ) = 1 ) <-> ( S ` ( A i^i B ) ) = 1 ) ) |