Metamath Proof Explorer


Theorem jpi

Description: The function S , that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a Jauch-Piron state. Remark in Mayet p. 370. (See strlem3a for the proof that S is a state.) (Contributed by NM, 8-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses jp.1
|- S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) )
jp.2
|- A e. CH
jp.3
|- B e. CH
Assertion jpi
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( ( ( S ` A ) = 1 /\ ( S ` B ) = 1 ) <-> ( S ` ( A i^i B ) ) = 1 ) )

Proof

Step Hyp Ref Expression
1 jp.1
 |-  S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) )
2 jp.2
 |-  A e. CH
3 jp.3
 |-  B e. CH
4 elin
 |-  ( u e. ( A i^i B ) <-> ( u e. A /\ u e. B ) )
5 1 2 jplem2
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. A <-> ( S ` A ) = 1 ) )
6 1 3 jplem2
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. B <-> ( S ` B ) = 1 ) )
7 5 6 anbi12d
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( ( u e. A /\ u e. B ) <-> ( ( S ` A ) = 1 /\ ( S ` B ) = 1 ) ) )
8 4 7 syl5bb
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. ( A i^i B ) <-> ( ( S ` A ) = 1 /\ ( S ` B ) = 1 ) ) )
9 2 3 chincli
 |-  ( A i^i B ) e. CH
10 1 9 jplem2
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. ( A i^i B ) <-> ( S ` ( A i^i B ) ) = 1 ) )
11 8 10 bitr3d
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( ( ( S ` A ) = 1 /\ ( S ` B ) = 1 ) <-> ( S ` ( A i^i B ) ) = 1 ) )