Step |
Hyp |
Ref |
Expression |
1 |
|
jp.1 |
|- S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) |
2 |
|
jp.2 |
|- A e. CH |
3 |
2
|
jplem1 |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. A <-> ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = 1 ) ) |
4 |
1
|
strlem2 |
|- ( A e. CH -> ( S ` A ) = ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) ) |
5 |
2 4
|
ax-mp |
|- ( S ` A ) = ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) |
6 |
5
|
eqeq1i |
|- ( ( S ` A ) = 1 <-> ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = 1 ) |
7 |
3 6
|
bitr4di |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. A <-> ( S ` A ) = 1 ) ) |