Metamath Proof Explorer


Theorem jplem2

Description: Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses jp.1
|- S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) )
jp.2
|- A e. CH
Assertion jplem2
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. A <-> ( S ` A ) = 1 ) )

Proof

Step Hyp Ref Expression
1 jp.1
 |-  S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) )
2 jp.2
 |-  A e. CH
3 2 jplem1
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. A <-> ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = 1 ) )
4 1 strlem2
 |-  ( A e. CH -> ( S ` A ) = ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) )
5 2 4 ax-mp
 |-  ( S ` A ) = ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 )
6 5 eqeq1i
 |-  ( ( S ` A ) = 1 <-> ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = 1 )
7 3 6 bitr4di
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. A <-> ( S ` A ) = 1 ) )