| Step | Hyp | Ref | Expression | 
						
							| 1 |  | jp.1 |  |-  S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) | 
						
							| 2 |  | jp.2 |  |-  A e. CH | 
						
							| 3 | 2 | jplem1 |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. A <-> ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = 1 ) ) | 
						
							| 4 | 1 | strlem2 |  |-  ( A e. CH -> ( S ` A ) = ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) ) | 
						
							| 5 | 2 4 | ax-mp |  |-  ( S ` A ) = ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) | 
						
							| 6 | 5 | eqeq1i |  |-  ( ( S ` A ) = 1 <-> ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = 1 ) | 
						
							| 7 | 3 6 | bitr4di |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. A <-> ( S ` A ) = 1 ) ) |