| Step | Hyp | Ref | Expression | 
						
							| 1 |  | jplem1.1 |  |-  A e. CH | 
						
							| 2 |  | pjnorm2 |  |-  ( ( A e. CH /\ u e. ~H ) -> ( u e. A <-> ( normh ` ( ( projh ` A ) ` u ) ) = ( normh ` u ) ) ) | 
						
							| 3 | 1 2 | mpan |  |-  ( u e. ~H -> ( u e. A <-> ( normh ` ( ( projh ` A ) ` u ) ) = ( normh ` u ) ) ) | 
						
							| 4 |  | eqeq2 |  |-  ( ( normh ` u ) = 1 -> ( ( normh ` ( ( projh ` A ) ` u ) ) = ( normh ` u ) <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) | 
						
							| 5 | 3 4 | sylan9bb |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. A <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) | 
						
							| 6 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 7 | 6 | eqeq2i |  |-  ( ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = 1 ) | 
						
							| 8 | 1 | pjhcli |  |-  ( u e. ~H -> ( ( projh ` A ) ` u ) e. ~H ) | 
						
							| 9 |  | normcl |  |-  ( ( ( projh ` A ) ` u ) e. ~H -> ( normh ` ( ( projh ` A ) ` u ) ) e. RR ) | 
						
							| 10 | 8 9 | syl |  |-  ( u e. ~H -> ( normh ` ( ( projh ` A ) ` u ) ) e. RR ) | 
						
							| 11 |  | normge0 |  |-  ( ( ( projh ` A ) ` u ) e. ~H -> 0 <_ ( normh ` ( ( projh ` A ) ` u ) ) ) | 
						
							| 12 | 8 11 | syl |  |-  ( u e. ~H -> 0 <_ ( normh ` ( ( projh ` A ) ` u ) ) ) | 
						
							| 13 |  | 1re |  |-  1 e. RR | 
						
							| 14 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 15 |  | sq11 |  |-  ( ( ( ( normh ` ( ( projh ` A ) ` u ) ) e. RR /\ 0 <_ ( normh ` ( ( projh ` A ) ` u ) ) ) /\ ( 1 e. RR /\ 0 <_ 1 ) ) -> ( ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) | 
						
							| 16 | 13 14 15 | mpanr12 |  |-  ( ( ( normh ` ( ( projh ` A ) ` u ) ) e. RR /\ 0 <_ ( normh ` ( ( projh ` A ) ` u ) ) ) -> ( ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) | 
						
							| 17 | 10 12 16 | syl2anc |  |-  ( u e. ~H -> ( ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) | 
						
							| 18 | 7 17 | bitr3id |  |-  ( u e. ~H -> ( ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = 1 <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = 1 <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) | 
						
							| 20 | 5 19 | bitr4d |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. A <-> ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = 1 ) ) |