Metamath Proof Explorer


Theorem jplem1

Description: Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypothesis jplem1.1 𝐴C
Assertion jplem1 ( ( 𝑢 ∈ ℋ ∧ ( norm𝑢 ) = 1 ) → ( 𝑢𝐴 ↔ ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = 1 ) )

Proof

Step Hyp Ref Expression
1 jplem1.1 𝐴C
2 pjnorm2 ( ( 𝐴C𝑢 ∈ ℋ ) → ( 𝑢𝐴 ↔ ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) = ( norm𝑢 ) ) )
3 1 2 mpan ( 𝑢 ∈ ℋ → ( 𝑢𝐴 ↔ ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) = ( norm𝑢 ) ) )
4 eqeq2 ( ( norm𝑢 ) = 1 → ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) = ( norm𝑢 ) ↔ ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) = 1 ) )
5 3 4 sylan9bb ( ( 𝑢 ∈ ℋ ∧ ( norm𝑢 ) = 1 ) → ( 𝑢𝐴 ↔ ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) = 1 ) )
6 sq1 ( 1 ↑ 2 ) = 1
7 6 eqeq2i ( ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = 1 )
8 1 pjhcli ( 𝑢 ∈ ℋ → ( ( proj𝐴 ) ‘ 𝑢 ) ∈ ℋ )
9 normcl ( ( ( proj𝐴 ) ‘ 𝑢 ) ∈ ℋ → ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ∈ ℝ )
10 8 9 syl ( 𝑢 ∈ ℋ → ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ∈ ℝ )
11 normge0 ( ( ( proj𝐴 ) ‘ 𝑢 ) ∈ ℋ → 0 ≤ ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) )
12 8 11 syl ( 𝑢 ∈ ℋ → 0 ≤ ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) )
13 1re 1 ∈ ℝ
14 0le1 0 ≤ 1
15 sq11 ( ( ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ∈ ℝ ∧ 0 ≤ ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ) ∧ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) → ( ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) = 1 ) )
16 13 14 15 mpanr12 ( ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ∈ ℝ ∧ 0 ≤ ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ) → ( ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) = 1 ) )
17 10 12 16 syl2anc ( 𝑢 ∈ ℋ → ( ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) = 1 ) )
18 7 17 bitr3id ( 𝑢 ∈ ℋ → ( ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = 1 ↔ ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) = 1 ) )
19 18 adantr ( ( 𝑢 ∈ ℋ ∧ ( norm𝑢 ) = 1 ) → ( ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = 1 ↔ ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) = 1 ) )
20 5 19 bitr4d ( ( 𝑢 ∈ ℋ ∧ ( norm𝑢 ) = 1 ) → ( 𝑢𝐴 ↔ ( ( norm ‘ ( ( proj𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = 1 ) )