| Step | Hyp | Ref | Expression | 
						
							| 1 |  | jplem1.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | pjnorm2 | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  →  ( 𝑢  ∈  𝐴  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  ( normℎ ‘ 𝑢 ) ) ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝑢  ∈   ℋ  →  ( 𝑢  ∈  𝐴  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  ( normℎ ‘ 𝑢 ) ) ) | 
						
							| 4 |  | eqeq2 | ⊢ ( ( normℎ ‘ 𝑢 )  =  1  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  ( normℎ ‘ 𝑢 )  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  1 ) ) | 
						
							| 5 | 3 4 | sylan9bb | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑢  ∈  𝐴  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  1 ) ) | 
						
							| 6 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 7 | 6 | eqeq2i | ⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 )  =  ( 1 ↑ 2 )  ↔  ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 )  =  1 ) | 
						
							| 8 | 1 | pjhcli | ⊢ ( 𝑢  ∈   ℋ  →  ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 )  ∈   ℋ ) | 
						
							| 9 |  | normcl | ⊢ ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 )  ∈   ℋ  →  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  ∈  ℝ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝑢  ∈   ℋ  →  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  ∈  ℝ ) | 
						
							| 11 |  | normge0 | ⊢ ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 )  ∈   ℋ  →  0  ≤  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ) | 
						
							| 12 | 8 11 | syl | ⊢ ( 𝑢  ∈   ℋ  →  0  ≤  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ) | 
						
							| 13 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 14 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 15 |  | sq11 | ⊢ ( ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) )  ∧  ( 1  ∈  ℝ  ∧  0  ≤  1 ) )  →  ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 )  =  ( 1 ↑ 2 )  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  1 ) ) | 
						
							| 16 | 13 14 15 | mpanr12 | ⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) )  →  ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 )  =  ( 1 ↑ 2 )  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  1 ) ) | 
						
							| 17 | 10 12 16 | syl2anc | ⊢ ( 𝑢  ∈   ℋ  →  ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 )  =  ( 1 ↑ 2 )  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  1 ) ) | 
						
							| 18 | 7 17 | bitr3id | ⊢ ( 𝑢  ∈   ℋ  →  ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 )  =  1  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  1 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 )  =  1  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) )  =  1 ) ) | 
						
							| 20 | 5 19 | bitr4d | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑢  ∈  𝐴  ↔  ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 )  =  1 ) ) |