Metamath Proof Explorer


Theorem jplem2

Description: Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses jp.1 S=xCnormprojxu2
jp.2 AC
Assertion jplem2 unormu=1uASA=1

Proof

Step Hyp Ref Expression
1 jp.1 S=xCnormprojxu2
2 jp.2 AC
3 2 jplem1 unormu=1uAnormprojAu2=1
4 1 strlem2 ACSA=normprojAu2
5 2 4 ax-mp SA=normprojAu2
6 5 eqeq1i SA=1normprojAu2=1
7 3 6 bitr4di unormu=1uASA=1