Metamath Proof Explorer


Theorem kbval

Description: The value of the operator resulting from the outer product | A >. <. B | of two vectors. Equation 8.1 of Prugovecki p. 376. (Contributed by NM, 15-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion kbval ABCAketbraBC=CihBA

Proof

Step Hyp Ref Expression
1 kbfval ABAketbraB=xxihBA
2 1 fveq1d ABAketbraBC=xxihBAC
3 oveq1 x=CxihB=CihB
4 3 oveq1d x=CxihBA=CihBA
5 eqid xxihBA=xxihBA
6 ovex CihBAV
7 4 5 6 fvmpt CxxihBAC=CihBA
8 2 7 sylan9eq ABCAketbraBC=CihBA
9 8 3impa ABCAketbraBC=CihBA