Metamath Proof Explorer


Theorem keephyp3v

Description: Keep a hypothesis containing 3 class variables. (Contributed by NM, 27-Sep-1999)

Ref Expression
Hypotheses keephyp3v.1 A=ifφADρχ
keephyp3v.2 B=ifφBRχθ
keephyp3v.3 C=ifφCSθτ
keephyp3v.4 D=ifφADηζ
keephyp3v.5 R=ifφBRζσ
keephyp3v.6 S=ifφCSστ
keephyp3v.7 ρ
keephyp3v.8 η
Assertion keephyp3v τ

Proof

Step Hyp Ref Expression
1 keephyp3v.1 A=ifφADρχ
2 keephyp3v.2 B=ifφBRχθ
3 keephyp3v.3 C=ifφCSθτ
4 keephyp3v.4 D=ifφADηζ
5 keephyp3v.5 R=ifφBRζσ
6 keephyp3v.6 S=ifφCSστ
7 keephyp3v.7 ρ
8 keephyp3v.8 η
9 iftrue φifφAD=A
10 9 eqcomd φA=ifφAD
11 10 1 syl φρχ
12 iftrue φifφBR=B
13 12 eqcomd φB=ifφBR
14 13 2 syl φχθ
15 iftrue φifφCS=C
16 15 eqcomd φC=ifφCS
17 16 3 syl φθτ
18 11 14 17 3bitrd φρτ
19 7 18 mpbii φτ
20 iffalse ¬φifφAD=D
21 20 eqcomd ¬φD=ifφAD
22 21 4 syl ¬φηζ
23 iffalse ¬φifφBR=R
24 23 eqcomd ¬φR=ifφBR
25 24 5 syl ¬φζσ
26 iffalse ¬φifφCS=S
27 26 eqcomd ¬φS=ifφCS
28 27 6 syl ¬φστ
29 22 25 28 3bitrd ¬φητ
30 8 29 mpbii ¬φτ
31 19 30 pm2.61i τ