Metamath Proof Explorer


Theorem kqval

Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F=xXyJ|xy
Assertion kqval JTopOnXKQJ=JqTopF

Proof

Step Hyp Ref Expression
1 kqval.2 F=xXyJ|xy
2 topontop JTopOnXJTop
3 id j=Jj=J
4 unieq j=Jj=J
5 rabeq j=Jyj|xy=yJ|xy
6 4 5 mpteq12dv j=Jxjyj|xy=xJyJ|xy
7 3 6 oveq12d j=JjqTopxjyj|xy=JqTopxJyJ|xy
8 df-kq KQ=jTopjqTopxjyj|xy
9 ovex JqTopxJyJ|xyV
10 7 8 9 fvmpt JTopKQJ=JqTopxJyJ|xy
11 2 10 syl JTopOnXKQJ=JqTopxJyJ|xy
12 toponuni JTopOnXX=J
13 12 mpteq1d JTopOnXxXyJ|xy=xJyJ|xy
14 1 13 eqtrid JTopOnXF=xJyJ|xy
15 14 oveq2d JTopOnXJqTopF=JqTopxJyJ|xy
16 11 15 eqtr4d JTopOnXKQJ=JqTopF