Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) |
2 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
3 |
|
id |
⊢ ( 𝑗 = 𝐽 → 𝑗 = 𝐽 ) |
4 |
|
unieq |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) |
5 |
|
rabeq |
⊢ ( 𝑗 = 𝐽 → { 𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦 } = { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) |
6 |
4 5
|
mpteq12dv |
⊢ ( 𝑗 = 𝐽 → ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦 } ) = ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) |
7 |
3 6
|
oveq12d |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 qTop ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦 } ) ) = ( 𝐽 qTop ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
8 |
|
df-kq |
⊢ KQ = ( 𝑗 ∈ Top ↦ ( 𝑗 qTop ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
9 |
|
ovex |
⊢ ( 𝐽 qTop ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) ∈ V |
10 |
7 8 9
|
fvmpt |
⊢ ( 𝐽 ∈ Top → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
11 |
2 10
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
12 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
13 |
12
|
mpteq1d |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) = ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) |
14 |
1 13
|
eqtrid |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 = ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
16 |
11 15
|
eqtr4d |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) ) |