Metamath Proof Explorer


Theorem kqval

Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 𝐹 = ( 𝑥𝑋 ↦ { 𝑦𝐽𝑥𝑦 } )
Assertion kqval ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) )

Proof

Step Hyp Ref Expression
1 kqval.2 𝐹 = ( 𝑥𝑋 ↦ { 𝑦𝐽𝑥𝑦 } )
2 topontop ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top )
3 id ( 𝑗 = 𝐽𝑗 = 𝐽 )
4 unieq ( 𝑗 = 𝐽 𝑗 = 𝐽 )
5 rabeq ( 𝑗 = 𝐽 → { 𝑦𝑗𝑥𝑦 } = { 𝑦𝐽𝑥𝑦 } )
6 4 5 mpteq12dv ( 𝑗 = 𝐽 → ( 𝑥 𝑗 ↦ { 𝑦𝑗𝑥𝑦 } ) = ( 𝑥 𝐽 ↦ { 𝑦𝐽𝑥𝑦 } ) )
7 3 6 oveq12d ( 𝑗 = 𝐽 → ( 𝑗 qTop ( 𝑥 𝑗 ↦ { 𝑦𝑗𝑥𝑦 } ) ) = ( 𝐽 qTop ( 𝑥 𝐽 ↦ { 𝑦𝐽𝑥𝑦 } ) ) )
8 df-kq KQ = ( 𝑗 ∈ Top ↦ ( 𝑗 qTop ( 𝑥 𝑗 ↦ { 𝑦𝑗𝑥𝑦 } ) ) )
9 ovex ( 𝐽 qTop ( 𝑥 𝐽 ↦ { 𝑦𝐽𝑥𝑦 } ) ) ∈ V
10 7 8 9 fvmpt ( 𝐽 ∈ Top → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop ( 𝑥 𝐽 ↦ { 𝑦𝐽𝑥𝑦 } ) ) )
11 2 10 syl ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop ( 𝑥 𝐽 ↦ { 𝑦𝐽𝑥𝑦 } ) ) )
12 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = 𝐽 )
13 12 mpteq1d ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑥𝑋 ↦ { 𝑦𝐽𝑥𝑦 } ) = ( 𝑥 𝐽 ↦ { 𝑦𝐽𝑥𝑦 } ) )
14 1 13 eqtrid ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 = ( 𝑥 𝐽 ↦ { 𝑦𝐽𝑥𝑦 } ) )
15 14 oveq2d ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝑥 𝐽 ↦ { 𝑦𝐽𝑥𝑦 } ) ) )
16 11 15 eqtr4d ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) )