Metamath Proof Explorer


Theorem latasymb

Description: A lattice ordering is asymmetric. ( eqss analog.) (Contributed by NM, 22-Oct-2011)

Ref Expression
Hypotheses latref.b B = Base K
latref.l ˙ = K
Assertion latasymb K Lat X B Y B X ˙ Y Y ˙ X X = Y

Proof

Step Hyp Ref Expression
1 latref.b B = Base K
2 latref.l ˙ = K
3 latpos K Lat K Poset
4 1 2 posasymb K Poset X B Y B X ˙ Y Y ˙ X X = Y
5 3 4 syl3an1 K Lat X B Y B X ˙ Y Y ˙ X X = Y