Metamath Proof Explorer


Theorem latasymb

Description: A lattice ordering is asymmetric. ( eqss analog.) (Contributed by NM, 22-Oct-2011)

Ref Expression
Hypotheses latref.b B=BaseK
latref.l ˙=K
Assertion latasymb KLatXBYBX˙YY˙XX=Y

Proof

Step Hyp Ref Expression
1 latref.b B=BaseK
2 latref.l ˙=K
3 latpos KLatKPoset
4 1 2 posasymb KPosetXBYBX˙YY˙XX=Y
5 3 4 syl3an1 KLatXBYBX˙YY˙XX=Y