Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
laut1o
Next ⟩
laut11
Metamath Proof Explorer
Ascii
Unicode
Theorem
laut1o
Description:
A lattice automorphism is one-to-one and onto.
(Contributed by
NM
, 19-May-2012)
Ref
Expression
Hypotheses
laut1o.b
⊢
B
=
Base
K
laut1o.i
⊢
I
=
LAut
⁡
K
Assertion
laut1o
⊢
K
∈
A
∧
F
∈
I
→
F
:
B
⟶
1-1 onto
B
Proof
Step
Hyp
Ref
Expression
1
laut1o.b
⊢
B
=
Base
K
2
laut1o.i
⊢
I
=
LAut
⁡
K
3
eqid
⊢
≤
K
=
≤
K
4
1
3
2
islaut
⊢
K
∈
A
→
F
∈
I
↔
F
:
B
⟶
1-1 onto
B
∧
∀
x
∈
B
∀
y
∈
B
x
≤
K
y
↔
F
⁡
x
≤
K
F
⁡
y
5
4
simprbda
⊢
K
∈
A
∧
F
∈
I
→
F
:
B
⟶
1-1 onto
B