Metamath Proof Explorer


Theorem lcmcom

Description: The lcm operator is commutative. (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmcom MNMlcmN=NlcmM

Proof

Step Hyp Ref Expression
1 orcom M=0N=0N=0M=0
2 ancom MnNnNnMn
3 2 rabbii n|MnNn=n|NnMn
4 3 infeq1i supn|MnNn<=supn|NnMn<
5 1 4 ifbieq2i ifM=0N=00supn|MnNn<=ifN=0M=00supn|NnMn<
6 lcmval MNMlcmN=ifM=0N=00supn|MnNn<
7 lcmval NMNlcmM=ifN=0M=00supn|NnMn<
8 7 ancoms MNNlcmM=ifN=0M=00supn|NnMn<
9 5 6 8 3eqtr4a MNMlcmN=NlcmM