Metamath Proof Explorer


Theorem lcmfcl

Description: Closure of the _lcm function. (Contributed by AV, 21-Aug-2020)

Ref Expression
Assertion lcmfcl ZZFinlcm_Z0

Proof

Step Hyp Ref Expression
1 lcmf0val Z0Zlcm_Z=0
2 0nn0 00
3 1 2 eqeltrdi Z0Zlcm_Z0
4 3 adantlr ZZFin0Zlcm_Z0
5 df-nel 0Z¬0Z
6 lcmfn0cl ZZFin0Zlcm_Z
7 6 3expa ZZFin0Zlcm_Z
8 5 7 sylan2br ZZFin¬0Zlcm_Z
9 8 nnnn0d ZZFin¬0Zlcm_Z0
10 4 9 pm2.61dan ZZFinlcm_Z0