Metamath Proof Explorer


Theorem lcmineqlem14

Description: Technical lemma for inequality estimate. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses lcmineqlem14.1 φA
lcmineqlem14.2 φB
lcmineqlem14.3 φC
lcmineqlem14.4 φD
lcmineqlem14.5 φE
lcmineqlem14.6 φACD
lcmineqlem14.7 φBCE
lcmineqlem14.8 φDE
lcmineqlem14.9 φAgcdB=1
Assertion lcmineqlem14 φABCE

Proof

Step Hyp Ref Expression
1 lcmineqlem14.1 φA
2 lcmineqlem14.2 φB
3 lcmineqlem14.3 φC
4 lcmineqlem14.4 φD
5 lcmineqlem14.5 φE
6 lcmineqlem14.6 φACD
7 lcmineqlem14.7 φBCE
8 lcmineqlem14.8 φDE
9 lcmineqlem14.9 φAgcdB=1
10 1 nnzd φA
11 2 nnzd φB
12 2 3 5 nnproddivdvdsd φBCEBEC
13 7 12 mpbid φBEC
14 dvdszrcl BECBEC
15 13 14 syl φBEC
16 15 simprd φEC
17 3 nnzd φC
18 10 17 zmulcld φAC
19 4 nnzd φD
20 5 nnzd φE
21 18 19 20 6 8 dvdstrd φACE
22 1 3 5 nnproddivdvdsd φACEAEC
23 21 22 mpbid φAEC
24 10 11 16 9 23 13 coprmdvds2d φABEC
25 1 2 nnmulcld φAB
26 25 3 5 nnproddivdvdsd φABCEABEC
27 24 26 mpbird φABCE